We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




MRI Technology Enables Noninvasive Monitoring of Emergent Cell Therapies

By LabMedica International staff writers
Posted on 07 Oct 2014
Print article
Cellular therapeutics, the application of using intact cells to treat and cure disease, is an important potential new therapeutic application, but it is hampered by the inability of clinicians and scientists to effectively monitor the destination, movements, and perseverance of these cells in patients without having to use invasive procedures, such as tissue sampling.

In a study published September 19, 2014, in the online journal Magnetic Resonance in Medicine, researchers from the University of California (UC), San Diego School of Medicine (USA), University of Pittsburgh, and elsewhere describe the first human tests of using a perfluorocarbon (PFC) tracer in combination with noninvasive magnetic resonance imaging (MRI) scanning to track therapeutic immune cells injected into colorectal cancer patients.

“Initially, we see this technique used for clinical trials that involve tests of new cell therapies,” said first author Eric T. Ahrens, PhD, professor in the department of radiology at UC San Diego. “Clinical development of cell therapies can be accelerated by providing feedback regarding cell motility, optimal delivery routes, individual therapeutic doses, and engraftment success.”

Currently, there is no accepted way to image cells in the human body that includes a broad range of cell types and diseases. Earlier strategies have employed metal ion-based vascular MRI contrast agents and radioisotopes. The former have been shown to be difficult to differentiate in vivo; the latter raise apprehensions about radiation toxicity and do not provide the anatomic facets available with MRI scans. “This is the first human PFC cell tracking agent, which is a new way to do MRI cell tracking,” said Dr. Ahrens. “It’s the first example of a clinical MRI agent designed specifically for cell tracking.”

Researchers utilized a PFC tracer agent and an MRI technique that directly identifies fluorine atoms in labeled cells. Fluorine atoms naturally occur in extremely low concentrations in the body, making it easier to see cells labeled with fluorine using MRI scanning. In this instance, the engineered and labeled dendritic cells—powerful stimulators of the immune system—were first prepared from white blood cells extracted from the patient. The cells were then injected into patients with stage 4 metastatic colorectal cancer to trigger an anticancer T-cell immune response.

The published study did not evaluate the effectiveness of the cell therapy, but instead the ability of researchers to detect the labeled cells and monitor what occurred to them. Ahrens said the technique worked as expected, with the unanticipated finding that only half of the delivered cell vaccine remained at the inoculation site after 24 hours.

“The imaging agent technology has been to shown to be able to tag any cell type that is of interest,” Dr. Ahrens concluded. “It is a platform imaging technology for a wide range of diseases and applications, which might also speed development of relevant therapies. Noninvasive cell tracking may help lower regulatory barriers. For example, new stem cell therapies can be slow to obtain regulatory approvals in part because it is difficult, if not impossible, with current approaches to verify survival and location of transplanted cells. And cell therapy trials generally have a high cost per patient. Tools that allow the investigator to gain a ‘richer’ data set from individual patients mean it may be possible to reduce patient numbers enrolled in a trial, thus reducing total trial cost.”

Related Links:

University of California, San Diego School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.