We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

By LabMedica International staff writers
Posted on 22 Apr 2024
Print article
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute cellular rejection (ACR), where T cells attack the transplanted organ. To counteract this, organ transplant recipients must take immunosuppressive drugs indefinitely. Despite this, rejection episodes can still occur, necessitating long-term monitoring. Currently, ACR detection in transplant patients requires repeated surgical biopsies throughout their lives. These biopsies are vital for monitoring ACR and adjusting treatments accordingly, yet they diminish the patient's quality of life and can cause severe complications. Now, the discovery of a promising biomarker has paved the way for a blood test for ACR.

Researchers at Yale School of Medicine (New Haven, CT, USA) have achieved a potential breakthrough in monitoring ACR via blood tests by focusing on T cell exosomes, which are significantly altered during ACR. These extracellular vesicles play a crucial role in cell communication and transport various proteins and RNAs. Although T cells themselves do not show detectable changes in the bloodstream during ACR, their exosomes do. Isolating these exosomes for study presents challenges due to the mixture of exosomes from various cells in the blood. The research team has developed a method to enrich T cell exosomes from blood samples, providing detailed insights into the changes in their cargo during ACR. Using advanced techniques like RT-qPCR for RNA and western blot for protein analysis, they have identified significant differences in T cell exosomes from mouse models of heart transplantation undergoing ACR.

This methodology was also applied to human heart transplant patients, confirming similar alterations in T cell exosomes in the case of ACR patients. The study demonstrates that T cell exosomes not only indicate the occurrence of ACR but may also contribute to the damage in transplant rejection. The ongoing research aims to validate this biomarker in a larger cohort of heart transplant recipients and to extend the findings to lung transplant monitoring. Ultimately, this could lead to replacing invasive surgical biopsies with a simple blood test for detecting ACR, enhancing the quality of life and potentially saving more lives by facilitating timely interventions.

“I’m imagining a future in which a heart transplant patient could go once a month to a local [diagnostics] lab,” said Prashanth Vallabhajosyula, MD, MS, associate professor of surgery (cardiac) and the study’s principal investigator. “They don’t have to come to a cath lab and get a biopsy of their transplanted heart. They just go to a local lab, give a blood sample, and go home, and clinicians would receive molecular information about the overall immune health of the transplanted heart.”

Related Links:
Yale School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.