We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




RSV Non-Structural Protein Interferes with Host Immune Response

By LabMedica International staff writers
Posted on 19 Jul 2017
Print article
Image: Researchers have solved the structure of the NS1 protein that helps the common respiratory virus RSV evade the immune system (Photo courtesy of Dr. Daisy Leung, Washington University School of Medicine).
Image: Researchers have solved the structure of the NS1 protein that helps the common respiratory virus RSV evade the immune system (Photo courtesy of Dr. Daisy Leung, Washington University School of Medicine).
A team of molecular virologists used X-ray crystallography to establish the structure of a protein that enhances the infectivity of respiratory syncytial virus (RSV) by interfering with the host's immune response.

RSV is a major cause of morbidity and mortality in the pediatric, elderly, and immune-compromised populations. Very little has been known about how immunosuppressive proteins produced by the virus interact with host components that limit RSV replication. While it was known that RSV encodes for non-structural (NS) proteins that are important modulators of the immune response, the role of these proteins in viral pathogenesis was not well understood.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) used X-ray crystallography to determine the structure of RSV's NS1 protein. The structure of NS1 suggested that it is a structural paralogue of RSV matrix (M) protein. Comparative analysis of the shared structural fold with M revealed regions unique to NS1. Studies on NS1 wild type or mutant alone or in recombinant RSVs demonstrated that structural regions unique to NS1 contributed to modulation of host responses, including inhibition of type I interferon responses, suppression of dendritic cell maturation, and promotion of inflammatory responses.

In particular, the alpha 3 helix region of NS1 was identified as being critical for suppressing the immune response. To follow up on this finding, the investigators generated RSV variants with NS1 that was normal or defective in the alpha 3 helix region and measured the effect on the immune response towards cells infected with these viruses. They reported in the June 30, 2017, online edition of the journal Nature Microbiology that viruses with the mutated helix region did not suppress the immune response while the ones with the intact helix region did.

“We solved the structure of a protein that has eluded the field for quite some time,” said senior author Dr. Daisy Leung, assistant professor of pathology and immunology, biochemistry, and molecular biophysics at Washington University School of Medicine. “Now that we have the structure, we are able to see what the protein looks like, which will help us define what it does and how it does it. And that could lead, down the road, to new targets for vaccine or drug development.”

Related Links:
Washington University School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.