We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Robotic Platform Enables More Accurate Diagnosis of Cancer Cells

By LabMedica International staff writers
Posted on 25 Oct 2023
Print article
Image: A tissue sample, for example a lymph node, is only 5–10 mm in size (Photo courtesy of ETH Zurich)
Image: A tissue sample, for example a lymph node, is only 5–10 mm in size (Photo courtesy of ETH Zurich)

For more than a century, the field of histology, which falls under pathology and focuses on changes in tissue, has relied on an old-school method. This involves slicing tissue samples into extremely thin sections—each about seven times thinner than a human hair—and then examining them for any abnormal changes under a microscope. The downside of this traditional technique is that it leads to misdiagnosis in about one out of every six people, often missing cancer cells. Now, scientists have integrated biomedical technology with mechanical engineering to create a robotic system that not only diagnoses cancer more precisely but also offers three-dimensional insights into the spatial arrangement of cells.

Researchers from ETH Zurich (Zurich, Switzerland) and the University of Zurich (Zurich, Switzerland) are working on this robotic platform designed to improve the accuracy of cancer diagnosis by rapidly quantifying tissue samples in their entirety. The procedure involves four stages. First, the tissue sample is automatically made transparent. Second, any unusual cells are quickly stained or colored. The third phase consists of generating a 3D image that maps out the cancer cells; the technology for this is already available. The last phase involves analyzing the tissue using 3D imaging software and training algorithms. This novel approach eliminates the need for labor-intensive preparation and slicing of tissue samples; instead, the entire tissue sample—like a lymph node—is preserved and fully examined. The 3D digital images showing the marked cells can be accessed online whenever needed.

Currently, the robot prototype is functional in the lab and can maneuver samples as required. However, it's not yet completely market-ready. While the team can provide preliminary services like automatically rendering sent-in tissue samples transparent and generating labeled 3D images swiftly, the software still needs fine-tuning. The researchers aim to commercialize this robotic system, offering research laboratories and healthcare facilities a dependable and effective tool that could revolutionize the way cancer diagnosis is conducted in the digital age.

Related Links:
ETH Zurich 
University of Zurich 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.