We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Quantum Dot Technology Increases Efficacy of Antibiotics

By LabMedica International staff writers
Posted on 18 Oct 2017
Print article
A team of molecular microbiologists used quantum dot technology to increase the efficacy of antibiotics to the point where they became capable of killing strains of "antibiotic-resistant" organisms.

Quantum dots are minute semiconductor particles, only several nanometers in size, so small that their optical and electronic properties differ from those of larger particles. Many types of quantum dots will emit light of specific frequencies if electricity or light is applied to them, and these frequencies can be precisely tuned by changing the dots' size, shape, and material, giving rise to many applications.

Interest in the potential use of quantum dots to augment antibiotic potency comes from growing concern in the increasing number of multidrug-resistant (MDR) bacteria, an increase that has been exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics.

In this regard, investigators at the University of Colorado (Boulder, USA) reported in the October 4, 2017, online edition of the journal Science Advances that a light-activated nanoparticle, designed to produce a tunable flux of specific ROS, superoxide, potentiated the activity of antibiotics in clinical MDR isolates of Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Despite the high degree of antibiotic resistance in these isolates, the investigators observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and the superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the dots reduced the effective antibiotic resistance of the clinical isolate infections by a factor of 1,000 without producing adverse side effects.

In addition, the investigators showed that superoxide-generating nanoparticles in combination with the antibiotic ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased the survival of the roundworm Caenorhabditis elegans upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone.

“We are thinking more like the bug,” said senior author Dr. Anushree Chatterjee, assistant professor of chemical and biological engineering at the University of California. “This is a novel strategy that plays against the infection’s normal strength and catalyzes the antibiotic instead. Overall, the most important advantage of the quantum dot technology is that it offers clinicians an adaptable multifaceted approach to fighting infections that are already straining the limits of current treatments. Disease works much faster than we do. Medicine needs to evolve as well.”

Related Links:
University of Colorado

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The new blood test identifies key biomarkers of osteoarthritis (Photo courtesy of Shutterstock)

Blood Test Predicts Knee Osteoarthritis Eight Years Before Signs Appears On X-Rays

Osteoarthritis (OA) is the most prevalent form of arthritis, impacting millions worldwide and resulting in significant economic and social costs. Although no cure exists currently, the effectiveness of... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.