We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

By LabMedica International staff writers
Posted on 15 Apr 2024
Print article
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells. However, traditional cell separation techniques, which typically focus on isolating single tumor cells, are inadequate for simultaneously purifying tumor cell clusters. In response, researchers have developed a microfluidic method capable of high-throughput, continuous-flow ternary separation of single tumor cells, tumor cell clusters, and white blood cells (WBCs) from clinical samples of pleural or abdominal effusions. This technique incorporates slanted spiral channels and periodic contraction-expansion arrays to achieve separation.

The novel spiral-contraction-expansion device developed by researchers from Southeast University (Nanjing, China) utilizes slanted spiral channels combined with periodic contraction-expansion arrays for high-throughput, continuous-flow ternary separation of tumor cells and tumor cell clusters from a background of blood cells. By introducing periodic contraction-expansion arrays, the spiral-contraction-expansion device allows for the size-based ternary separation of cells under the combined action of the inertial lift force, Dean drag force, and local vortex-induced lift force. The researchers first characterized the ternary inertial focusing of differently sized particles in their spiral-contraction-expansion device and optimized the operational flow rate.

Subsequent evaluation was conducted of the device’s separation performance, recovery ratio, and purity of the tumor cells and clusters. The researchers also examined the device’s ability to carry out ternary separation of exfoliated tumor cells, tumor cell clusters, and WBCs from clinical pleural or abdominal effusions derived from cancer patients. The spiral-contraction-expansion device provides numerous benefits, including label-free, continuous-flow, high-throughput separation of tumor cells and clusters from cancer patient effusions in a single step. This method offers significant potential for enhancing the diagnosis and monitoring of treatment in cancer patients by analyzing malignant effusions with higher precision and efficiency.

Related Links:
Southeast University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.