We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Lung and Tracheal Tissue Expected to Aid Respiratory Disease Research

By Gerald M. Slutzky, PhD
Posted on 25 Nov 2016
Print article
Image: Researchers have created a tissue-engineered model of the lung and trachea to help study disease processes (Photo courtesy of the Children’s Hospital Los Angeles).
Image: Researchers have created a tissue-engineered model of the lung and trachea to help study disease processes (Photo courtesy of the Children’s Hospital Los Angeles).
By modifying a technique for growing cultured intestinal tissue, researchers have developed a tissue-engineered model of the lung and trachea, which contains the diverse cell types present in the human respiratory tract.

Since the cellular and molecular mechanisms that underpin regeneration of the human lung are unknown, study of lung repair has been slowed by the necessity of using model systems that exclude key components.

Investigators at Children's Hospital Los Angeles (CA, USA) had previously developed tissue-engineered small intestine (TESI) and showed that this regenerated tissue was functional and contained all of the key components of the native tissue. Based on this expertise, they hypothesized that multicellular epithelial and mesenchymal cell clusters or lung organoid units (LuOU) could be transplanted to recapitulate proximal and distal cellular structures of the native lung and airways.

The investigators described in the October 31, 2016, online edition of the journal Tissue Engineering Part C: Methods how they transplanted postnatal tissues from whole mouse and human lung, distal mouse lung, as well as mouse and human trachea onto biodegradable polymer scaffolds. The tissue obtained by using this strategy was termed tissue-engineered lung or TELu, and it contained the necessary cell types consistent with native adult lung tissue and demonstrated proliferative cells at two and four weeks. This technique recapitulated important elements of both mouse and human lungs featuring key components of both the proximal and distal lung regions.

"We think that understanding lung regeneration in this model will allow several steps forward," said senior author Dr. Tracy Grikscheit, associate professor of surgery at Children's Hospital Los Angeles. "For example, advanced stages of disease can be studied with TELu that would be impossible to fully understand in our patients. Likewise, we can more quickly apply many more therapies in this model in order to – hopefully – deliver future human therapies."

Related Links:
Children's Hospital Los Angeles


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.