We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Genomic Study Links Potassium Levels to Regulation of BP

By LabMedica International staff writers
Posted on 04 Jan 2018
Print article
A recent paper described a study designed to examine different points of the human genome to determine where the genetic sequence linked serum potassium levels to modulation of blood pressure (BP).

Investigators at the University of Georgia (Athens, USA) performed genome-wide analyses to identify genomic loci that interacted with potassium to influence BP using single-marker and gene-based tests on Chinese participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity).

The initial GenSalt study, which was designed to evaluate gene-diet (sodium and potassium) interactions on BP regulation, was performed in rural areas in northern China from October 2003 to July 2005. The overall objective of the study was to identify susceptibility genes that influenced individual BP responses to dietary sodium and potassium intake in human populations. The specific aims were: (1) To localize and identify novel genes related to variation in BP responses to a low dietary sodium intake and a high dietary sodium intake; (2) To localize and identify novel genes related to variations in BP responses to oral potassium supplementation; and (3) To localize and identify novel genes related to BP responses to a cold pressor test. In addition, the GenSalt study localized and identified genes related to usual BP level and the risk of hypertension.

For the current study, the investigators analyzed data from1876 GenSalt participants. The average results of three urine samples were used to estimate potassium excretion, while nine BP measurements were taken using a random-zero sphygmomanometer. A total of 2.2 million single nucleotide polymorphisms were imputed using Affymetrix (Santa Clara, CA, USA) 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panels.

Results published in the December 6, 2017, online edition of the journal Circulation: Cardiovascular Genetics revealed two genomic loci - one of which had never been identified - and six individual genes, all significantly associated with the regulation of blood pressure in the body.

“One of the major drawbacks of previous genetic studies of hypertension is that these studies did not explore the interactions between genes and environmental factors,” said senior author Dr. Changwei Li, assistant professor of biostatistics and epidemiology at the University of Georgia. “For example, some genes’ effect on blood pressure only manifests under certain environments. If environmental factors are not taken into account, these genes will not be identified for hypertension.”

“Findings from our study help to identify individuals who are particularly sensitive to dietary potassium as a way to reduce blood pressure, based on their genomic profiles,” said Dr. Li. “Subsequently, we could provide personalized suggestions to prevent disease based on their genotypes.”

Related Links:
University of Georgia
Affymetrix

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.