We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cryomicroscopy Enhances Mapping of Cystic Fibrosis Protein

By LabMedica International staff writers
Posted on 05 Apr 2017
Print article
Image: The molecular structure of the human cystic fibrosis protein, which controls the flow of crucial ions in and out of cells (Photo courtesy of the Laboratory of Membrane Biology and Biophysics at The Rockefeller University).
Image: The molecular structure of the human cystic fibrosis protein, which controls the flow of crucial ions in and out of cells (Photo courtesy of the Laboratory of Membrane Biology and Biophysics at The Rockefeller University).
A recent paper detailed the three-dimensional (3D) structure of cystic fibrosis transmembrane conductance regulator, the protein responsible for the genetic disorder cystic fibrosis (CF).

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Investigators at The Rockefeller University used electron cryomicroscopy (cryo-EM) to determine the three-dimensional (3D) structure of dephosphorylated human CFTR at a resolution of 3.9 Angstroms.

Researchers have historically relied on NMR and X-ray diffraction techniques to determine the structures of molecular complexes and proteins that play a role in the causes of various disease states. Structural information about a variety of medically important proteins and drugs has been obtained by these methods. Cryo-EM is a complementary analytical technique that provides near-atomic resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional (3D) model of the sample.

Results published in the March 23, 2017, issue of the journal Cell revealed that the structure of human CFTR was quite similar to that determined previously for the zebrafish. This close resemblance reinforced its relevance for understanding CFTR function. The human CFTR structure generated by this study revealed a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. In addition, the three-dimensional (3D) map showed a feature distinguishing CFTR from all other ABC transporters: the helix-loop transition in transmembrane helix eight, which likely forms the structural basis for CFTR’s channel function.

"With these detailed new reconstructions, we can begin to understand how this protein functions normally, and how errors within it cause cystic fibrosis," said senior author Dr. Jue Chen, professor of membrane biology and biophysics at The Rockefeller University. "We now know that the conclusions we drew from our previous work in zebrafish also apply to us."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.