We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Phosphatidylserine Reverses Neurodegeneration in Mouse Model of Familial Dysautonomia

By LabMedica International staff writers
Posted on 03 Jan 2017
Print article
Image: The molecular structure model of HDAC6 (Histone deacetylase 6) protein (Photo courtesy of Wikimedia Commons).
Image: The molecular structure model of HDAC6 (Histone deacetylase 6) protein (Photo courtesy of Wikimedia Commons).
A genetically engineered mouse model system was used to study the role of the IKAP protein in the neurodegeneration process that underlies the genetic disease Familial dysautonomia and to show that treatment with phosphatidylserine could alleviate symptoms of the disease.

Familial dysautonomia (FD) is found almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion with a carrier frequency of about one in 30. FD is a disorder of the autonomic nervous system, which does not affect intelligence but rather affects the development and survival of sensory, sympathetic, and some parasympathetic neurons in the autonomic and sensory nervous. Individuals with FD have frequent vomiting crises, pneumonia, problems with speech and movement, difficulty swallowing, inappropriate perception of heat, pain, and taste, as well as unstable blood pressure and gastrointestinal dysfunction.

At the molecular level FD is characterized by aberrant tissue-specific splicing of the IKBKAP (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein) gene at exon 20, which leads to reduction of IKAP protein levels in neuronal tissues.

To study the molecular mechanism behind FD, investigators at Tel Aviv University (Israel) generated a conditional knockout (CKO) mouse line in which exon 20 of IKBKAP was deleted in the nervous system. They reported in the December 20, 2016, online edition of the journal PLOS Genetics that the CKO FD mice exhibited developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. DRGs from the CKO mice were grossly reduced in size relative to DRGs in control mice and overall the neuronal network formation was compromised. Furthermore, DRGs from the CKO mice showed elevated levels of the enzyme HDAC6 (Histone deacetylase 6), reduced acetylated alpha-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF).

The investigators went on to show that phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of alpha-tubulin. Further phosphatidylserine treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing HDAC6 levels and thus increasing acetylation of alpha-tubulin levels. These results suggested that phosphatidylserine acted as an HDAC6 inhibitor to improve neurological function.

"We identified the molecular pathway that leads to neurodegeneration in FD and demonstrated that phosphatidylserine has the potential to slow progression of neurodegeneration," said senior author Dr. Gil Ast, professor of human genetics at Tel Aviv University.

Related Links:
Tel Aviv University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.