We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Macrophages Form Vascular Mimicry Channels to Supply Growing Tumors

By Gerald M. Slutzky, PhD
Posted on 22 Nov 2016
Print article
Image: Two adjacent sections of a mouse breast tumor. Tissue at left is stained so that normal blood vessels can be seen (black arrow). Extending from these vessels are blood filled channels (green arrows). On the right, the tissue is stained for a fluorescent protein expressed by the tumor cells. Here it is seen that blood-filled channels are actually formed by tumor cells in a process known as vascular mimicry (Photo courtesy of Cold Spring Harbor Laboratory).
Image: Two adjacent sections of a mouse breast tumor. Tissue at left is stained so that normal blood vessels can be seen (black arrow). Extending from these vessels are blood filled channels (green arrows). On the right, the tissue is stained for a fluorescent protein expressed by the tumor cells. Here it is seen that blood-filled channels are actually formed by tumor cells in a process known as vascular mimicry (Photo courtesy of Cold Spring Harbor Laboratory).
A potential new therapeutic approach to block cancer development is based on the finding that macrophages form primitive non-endothelial “vessels” or vascular mimicry channels that help supply growing tumors with oxygen and nutrients.

Vascular mimicry has been observed in several types of solid tumors, including glioblastoma, breast cancer, and melanoma, and has been attributed to a sub-population of cells within the tumor called cancer stem cells. Macrophages, key cells of the innate immune system, are known to support vascular development but were not believed to directly form vessel walls. New evidence has changed this concept, as investigators at the Scripps Research Institute (La Jolla, CA, USA) reported in November 11, 2016, online edition of the journal Scientific Reports that they had found that macrophages structurally formed primitive vascular mimicry (VM) channels in both tumor and angiogenesis in vivo models. These channels, which were lined with cells that expressed macrophage cell surface markers, were functionally connected to the systemic vasculature, as they were perfused by intravenously injected dye.

Since both models shared hypoxic micro-environments, the investigators hypothesized that hypoxia may be an important mediator of VM formation. Indeed, results showed that conditional genetic depletion of myeloid-specific HIF-1alpha (hypoxia inducible factor-1 alpha) resulted in decreased VM network formation, dye perfusion, and tumor size. The VM channels appeared to be too small to transport red blood cells, but the researchers suggested that the low oxygen concentrations within tumors drove macrophages to form this network of channels to transport dissolved oxygen and glucose.

"This may represent a whole new therapeutic target for treating tumors,” said senior author Dr. Martin Friedlander, a research professor at the Scripps Research Institute.

Related Links:
Scripps Research Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ASTar System has received US FDA 510(k) clearance (Photo courtesy of Q-linea AB)

Automated Sepsis Test System Enables Rapid Diagnosis for Patients with Severe Bloodstream Infections

Sepsis affects up to 50 million people globally each year, with bacteraemia, formerly known as blood poisoning, being a major cause. In the United States alone, approximately two million individuals are... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.