We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Gene Vaccine Protects Mice from Influenza Virus Strains

By LabMedica International staff writers
Posted on 13 Nov 2017
Print article
Image: A scanning electron micrograph (SEM) of the influenza virus (Photo courtesy of the CDC).
Image: A scanning electron micrograph (SEM) of the influenza virus (Photo courtesy of the CDC).
A team of molecular virologists protected mice from deadly infection caused by a range of influenza viruses by using a deactivated adenovirus vector to vaccinate them with a cocktail of centralized viral genes.

In a study conducted by investigators at the University of Nebraska, Lincoln (USA), mice were immunized with replication-defective adenovirus expressing the H1-con, H2-con, H3-con, and H5-con HA (hemagglutinin) consensus influenza virus genes in combination (multivalent) and compared to mice immunized with the traditional 2010–2011 FluZone and FluMist seasonal vaccines. The mice were then challenged with 10–100 MLD50 (the median lethal dose required to kill half the population) of H1N1, H3N1, H3N2 and H5N1 influenza viruses.

The investigators reported in the November 2, 2017, online edition of the journal Scientific Reports that the traditional vaccines induced robust levels of HA inhibition (HI) titers, but failed to protect against five different heterologous lethal influenza challenges. Conversely, the multivalent consensus vaccine induced protective HI titers against eight of 10 influenza viruses that represented a wide degree of divergence within the HA subtypes and protected 100% of mice from eight of nine lethal heterologous influenza virus challenges.

The vaccine protection was dose dependent, in general, and a low dose still provided 100% survival against seven of nine lethal heterologous influenza challenges. These data indicated that very low doses of adenovirus-vectored consensus vaccines induced superior levels of immunity against a wide divergence of influenza subtypes as compared to traditional vaccines.

"Our idea is that these centralized antigens can set up a foundation of immunity against influenza," said senior author Dr. Eric Weaver, assistant professor of biological sciences at the University of Nebraska, Lincoln. "Because they are centralized and represent all the strains equally, they could provide a basis for immunity against all evolved strains. An ideal influenza vaccine would be inexpensive, provide long-lasting immunity, require few immunizations, and would work against all variants of the virus. The ultimate goal is to be able to vaccinate once and provide lifelong protection."

Related Links:
University of Nebraska, Lincoln

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.