We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Deep Learning Powered AI Algorithms Improve Skin Cancer Diagnostic Accuracy

By LabMedica International staff writers
Posted on 16 Apr 2024
Print article
Image: AI can improve the accuracy of skin cancer diagnoses (Photo courtesy of 123RF)
Image: AI can improve the accuracy of skin cancer diagnoses (Photo courtesy of 123RF)

Artificial intelligence (AI) algorithms are increasingly being utilized in various clinical settings, such as dermatology. These algorithms are developed by training a computer with hundreds of thousands or millions of images of various skin conditions, each labeled with details like the diagnosis and patient outcomes. Through a process known as deep learning, the computer learns to identify patterns in the images that are indicative of specific skin diseases, including cancers. Once sufficiently trained, the algorithm can suggest potential diagnoses based on new images of a patient’s skin. However, these algorithms do not operate in isolation; they are used under the supervision of clinicians who evaluate the patient, make their own diagnostic assessments, and decide whether to follow the algorithm's recommendations.

Now, a new study led by researchers at Stanford Medicine (Stanford, CA, USA) has found that AI algorithms, which utilize deep learning, can enhance the accuracy of diagnosing skin cancers. This benefit extends to dermatologists, though the improvement is more pronounced for non-dermatologists. The study analyzed 12 research papers that documented over 67,000 evaluations of possible skin cancers by various medical practitioners, both with and without AI assistance. Findings indicated that healthcare practitioners without AI support accurately diagnosed approximately 75% of actual skin cancer cases and correctly identified about 81.5% of non-cancerous conditions that resembled cancer. The performance of healthcare practitioners improved when they used AI to assist with diagnoses. Their sensitivity increased to about 81.1% and their specificity to 86.1%.

Although these improvements might appear modest, they are crucial for correctly diagnosing patients who are either mistakenly told they do not have cancer when they do, or incorrectly informed they have cancer when they do not. The analysis further revealed that medical students, nurse practitioners, and primary care physicians gained the most from AI assistance, with average improvements of approximately 13 points in sensitivity and 11 points in specificity. While dermatologists and dermatology residents already showed higher overall accuracy, their diagnostic performance also saw gains in sensitivity and specificity with AI assistance. The researchers are now looking to further explore the potential and challenges of integrating AI tools into healthcare, particularly focusing on how physicians' and patients' perceptions and attitudes towards AI could affect its adoption.

“Previous studies have focused on how AI performs when compared with physicians,” said postdoctoral scholar Jiyeong Kim, PhD. “Our study compared physicians working without AI assistance with physicians using AI when diagnosing skin cancers.”

Related Links:
Stanford Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The new blood test identifies key biomarkers of osteoarthritis (Photo courtesy of Shutterstock)

Blood Test Predicts Knee Osteoarthritis Eight Years Before Signs Appears On X-Rays

Osteoarthritis (OA) is the most prevalent form of arthritis, impacting millions worldwide and resulting in significant economic and social costs. Although no cure exists currently, the effectiveness of... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.