We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Key Role Discovered for Enzyme in Preserving Essence of Stem Cells

By LabMedica International staff writers
Posted on 29 Aug 2012
Print article
Image: Mouse stem cells with both normally functioning copies of the Mof gene (left) have intact "stem-ness", that is lost in cells lacking one or both functional copies (middle and right) (Photo courtesy of Prof. Yali Dou’s laboratory, University of Michigan).
Image: Mouse stem cells with both normally functioning copies of the Mof gene (left) have intact "stem-ness", that is lost in cells lacking one or both functional copies (middle and right) (Photo courtesy of Prof. Yali Dou’s laboratory, University of Michigan).
A highly conserved yet unique acetyltransferase has now been shown to be essential in maintaining the self-renewal and pluripotent capacities of embryonic stem cells.

A team of scientists, primarily from the University of Michigan Medical School (Ann Arbor, MI, USA), have discovered that Mof, the only histone acetyltransferase known to be important in the functioning of non-differentiated embryonic stem cells (ESCs), is involved in regulating the core transcription mechanism in those cells by epigenetically marking chromatin to keep parts of the genome readily accessible. In ESCs, many areas of DNA are kept open for access, probably because they also need to produce many proteins that prevent differentiation. Once an ESC starts to differentiate, parts of the DNA close up and are no longer as accessible. Many scientific teams have studied this “selective silencing” and the factors that cause ESCs to start specializing by reading only certain genes. But few have looked at the crucial but little understood factors that facilitate broad-range DNA transcription to preserve “stem-ness”.

“If you think about stem cell biology, the self-renewal is one aspect that makes stem cells unique and powerful, and the differentiation is another,” says lead scientist Yali Dou, PhD and associate professor of pathology and biological chemistry. “People have looked a lot at differentiation to make cells useful for therapy in the future – but the stem cell itself is actually pretty fascinating.” Prof. Dou and her team have also reported on the protein WDR5 that places chromatin tags important during transcription, but Mof appears to control the process that actually allows cells to determine which genes to transcribe. “Mof marks the areas that need to stay open and maintains the potential to become anything,” Prof. Dou explains. The findings of the current extensive study, published on August 3, 2012, in the journal Cell Stem Cell, also include that ESC Mof-deletion mutants lose characteristic morphology, alkaline phosphatase (AP) staining, and differentiation potential. Furthermore, these mutants have aberrant expression of the core transcription factors Nanog, Oct4, and Sox2.

The new findings may also have particular importance for work on induced pluripotent stem cells (IPSCs), stem cells made from “adult” tissue. IPSC research holds promise for disease treatment as it could allow patients to be treated with stem cells made from their own tissue. But the current way of making IPSCs from tissue involves a process that uses a cancer-causing gene, a step that might give doctors and patients pause. Prof. Dou says that further work on Mof might make it possible to stop using this potentially harmful approach.

Related Links:

University of Michigan Health System



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.