We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Mixture of Adipose-derived Cells Prove Better at Inducing Bone Repair

By LabMedica International staff writers
Posted on 06 Mar 2019
Print article
Image: Bone regenerates when two human cell populations (pericytes and adventitial cells) are mixed and implanted in a skull bone defect in immunocompromised mice (Photo courtesy of Yiyun Wang, Johns Hopkins University).
Image: Bone regenerates when two human cell populations (pericytes and adventitial cells) are mixed and implanted in a skull bone defect in immunocompromised mice (Photo courtesy of Yiyun Wang, Johns Hopkins University).
Researchers have defined the differential but overlapping roles of two cell subsets involved in the paracrine induction of bone repair.

Paracrine signaling is a form of cell-to-cell communication in which a cell produces a signal to induce changes in nearby cells, altering the behavior of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to endocrine factors, hormones, which travel considerably longer distances via the circulatory system.

Pericytes are multi-functional cells that wrap around the endothelial cells that line the capillaries and venules throughout the body. These cells are embedded in basement membrane where they communicate with endothelial cells of the capillaries by means of both direct physical contact and paracrine signaling. Pericytes and other perivascular stem/stromal cells are of growing interest in the field of tissue engineering. A fraction of perivascular cells are well recognized to have mesenchymal stem cell (MSC) characteristics, including multipotentiality, self-renewal, immunoregulatory functions, and diverse roles in tissue repair.

Investigators at Johns Hopkins University (Baltimore, MD, USA) evaluated the differential but overlapping roles of two perivascular cell subsets in paracrine induction of bone repair. CD146+CD34−CD31−CD45−pericytes and CD34+CD146−CD31−CD45−adventitial cells were derived from human adipose (fat) tissue and applied alone or in a 1:1 combination to treat severe defects in the skulls of mice.

Results published in the January 7, 2019, online edition of the journal NPJ Regenerative Medicine revealed that pericytes induced growth of new blood vessels, while adventicytes induced the formation of bone synthesizing osteoblasts. For this study, the investigators performed in vitro osteogenic differentiation and tubulogenesis assays using either fluorescence activated cell sorting-derived CD146+ pericytes or CD34+ adventitial cells. The results indicated that the two types of cells working in tandem were better at promoting bone repair in mice than was either type by itself.

“Given these distinct but overlapping roles in bone repair, future use of a combination progenitor cell therapy may be effective,” said senior author Dr. Aaron James, associate professor of pathology at Johns Hopkins University. “Although our study used equal numbers of each type of cell, it will be important to study whether different ratios of these two cell types can support even more dramatic bone repair.”

“A prevailing theory in stem cell therapies derived from fat is that a heterogeneous cell population somehow works in concert to speed tissue regeneration, like different instruments in an orchestra playing in unison,” said Dr. James. “But the cellular or molecular mechanisms behind this theory have not been defined. The current study tried to isolate specific subpopulations of cells to try to determine which would work best. This study shows that two different cell populations - pericytes and adventicytes - can be used to regenerate tissue in a sort of beneficial duet, with distinct but complementary roles.”

Related Links:
Johns Hopkins University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.