We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




DNA Replication Determines Cell Cycle Duration

By LabMedica International staff writers
Posted on 10 Jul 2018
Print article
Image: Shown here in green is IkBa, the inhibitor of NF-kappaB and regulator of the immune system. The red region highlights an ubiquitin-independent degron (Photo courtesy of Wikimedia Commons).
Image: Shown here in green is IkBa, the inhibitor of NF-kappaB and regulator of the immune system. The red region highlights an ubiquitin-independent degron (Photo courtesy of Wikimedia Commons).
An international team of cell and molecular biologists found that DNA damage and danger of cancer development were minimized by a molecular mechanism that delays cell division (mitosis) until two complete copies of the cell's genome are created.

To maintain genome stability, cells have to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis.

Investigators at the Karolinska Institutet (Stockholm, Sweden) and the University of Sussex (United Kingdom) tested the hypothesis that DNA replication determined the timing of mitotic kinase activation. To do this, they generated a double-degron system to rapidly deplete the essential DNA replication-initiation factor CDC6 (Cell division control protein 6 homolog). A degron is a portion of a protein that is important in regulation of protein degradation rates. Known degrons include short amino acid sequences, structural motifs and exposed amino acids (often lysine or arginine) located anywhere in the protein. Some proteins contain multiple degrons.

The investigators reported in the June 28, 2018, online edition of the journal Molecular Cell that untransformed human cells shortened the cell cycle and prematurely entered mitosis in the absence of DNA replication. Using RNAi and inhibitors to independently target DNA replication licensing or firing, they found similar results in cancer cells. They also found that abrogating CHK1 activity in transformed cells, or CHK1 and p38 activity in untransformed cells enhanced CDK activation specifically upon G1/S transition, supporting the notion of a DNA replication checkpoint in human cells.

In the presence of DNA replication, inhibition of CHK1 and p38 led to premature activation of mitotic kinases, which induced severe replication stress. These results demonstrated that, rather than merely being a cell cycle output, DNA replication was an integral signaling component that restricted activation of mitotic kinases. DNA replication thus functioned as a brake that determined cell cycle duration.

"By creating cells that cannot copy their DNA and by following protein activities over time in single cells, we found that DNA replication blocks the enzymes that trigger cell division. Immediately after DNA replication is completed, the machinery that starts cell division is activated. This fundamental mechanism contributes to determining when human cells will divide," said senior author Dr. Arne Lindqvist, senior researcher in cell and molecular biology at Karolinska Institutet.

Related Links:
Karolinska Institutet
University of Sussex

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.