We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Development of PD Linked to Mitochondrial Damage

By LabMedica International staff writers
Posted on 27 Jun 2018
Print article
Image: Alpha-synuclein in mitochondria of neuron (left) and single molecule TIRF image of individual alpha-synuclein aggregates (right) (Photo courtesy of Mathew Horrocks).
Image: Alpha-synuclein in mitochondria of neuron (left) and single molecule TIRF image of individual alpha-synuclein aggregates (right) (Photo courtesy of Mathew Horrocks).
An international team of neurodegenerative disease researchers has suggested a mechanism that links mitochondrial damage caused by insoluble fibrils of alpha-synuclein to the development of Parkinson's disease.

The accumulation of misfolded alpha-synuclein amyloid fibrils leads to the formation of insoluble aggregates that have been implicated in several neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease. It has been exceedingly difficult to define the structure of alpha-synuclein fibrils due to their insolubility and complexity. Multiplication of alpha-synuclein encoding gene (SNCA) is correlated with early onset of the disease.

Investigators at The Francis Crick Institute (London, United Kingdom) and several British and American research institutes adopted a range of methods including single-molecule biophysical measurements, super-resolution microscopy, electrophysiology, and dynamic fluorescent neuronal imaging to describe the location and functional mechanism of oligomeric species of alpha-synuclein, compared to monomeric species. In addition, they generated neurons bearing a SNCA triplication mutation from pluripotent stem cells (iPSC).

Results published in the June 12, 2018, online edition of the journal Nature Communication revealed that aggregation of alpha-synuclein monomers generated beta sheet-rich oligomers that localized to the mitochondria in close proximity to several mitochondrial proteins including ATP synthase. Oligomers induced selective oxidation of the ATP synthase beta subunit and mitochondrial lipid peroxidation.

These oxidation events increased the probability of permeability transition pore (PTP) opening, triggering mitochondrial swelling, and ultimately cell death. Notably, inhibition of oligomer-induced oxidation prevented the pathological induction of PTP. Inducible pluripotent stem cells (iPSC)-derived neurons bearing SNCA triplication, generated alpha-synuclein aggregates that interacted with the ATP synthase and induced PTP opening, leading to neuronal death.

Senior author Dr. Sonia Gandhi, group leader at The Francis Crick Institute, said, "Our findings give us huge insight into why protein clumping is so damaging in Parkinson's, and highlight the need to develop therapies against the toxic form of alpha-synuclein, not the healthy non-clumped form."

Related Links:
The Francis Crick Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.