We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Nano-Imaging Reveals Links to Regulation of Bone Mineralization

By LabMedica International staff writers
Posted on 16 Apr 2018
Print article
Image: Calcium phosphate mineralization occurs in both extra- and intrafibrillar spaces of collagen (left and right images, respectively). The confined collagen structure contributes to reducing the thermodynamic energy barrier to intrafibrillar nucleation for bone mineralization (Photo courtesy of Washington University).
Image: Calcium phosphate mineralization occurs in both extra- and intrafibrillar spaces of collagen (left and right images, respectively). The confined collagen structure contributes to reducing the thermodynamic energy barrier to intrafibrillar nucleation for bone mineralization (Photo courtesy of Washington University).
A team of bioengineers applied a hi-tech nano-imagining technique to determine the mechanisms involved in the initialization and regulation of the process of bone mineralization.

Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors.

To develop a better understanding of the mechanisms underlying bone mineralization, investigators at Washington University (St. Louis, Mo, USA) turned to the Advanced Photon Source at the Argonne National Laboratory (Lemont, IL, USA). They used this tool to apply the technique of in situ small-angle X-ray (SAXS) scattering in order to study calcium phosphate nucleation in the collagen gap (a space about two nanometers high by 40 nanometers wide).

They investigators described in the March 6, 2018, online edition of the journal Nature Communications the results they had obtained using in situ X-ray scattering observations and classical nucleation theory. They reported obtaining nucleation energy barriers to intra- and extrafibrillar mineralization (IM and EM). Polyaspartic acid, an extrafibrillar nucleation inhibitor, increased interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lowered the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guided the two-dimensional morphology and structure of bioapatite and changed the nucleation pathway by reducing the total energy barrier.

“When we understand how new bone forms, we can modulate where it should form,” said senior author Dr. Young-Shin Jun, professor of energy and environmental and chemical engineering at Washington University. “Previously, we thought that collagen fibrils could serve as passive templates, however, this study confirmed that collagen fibrils play an active role in biomineralization by controlling nucleation pathways and energy barriers. If we can tweak the chemistry and send signals to form bone minerals faster or stronger, that would be helpful to the medical field.”

“Confined space is a somewhat exotic space that we have not explored much, and we are always thinking about new material formation without any limitation of space,” said Dr. Jun. “However, there are so many confined spaces, such as pores in geomedia in subsurface environments or in water filtration membranes, where calcium carbonate or calcium sulfate form as scale. This paper is a snapshot of one health aspect, but the new knowledge can be applied broadly to energy systems and water systems.”

Related Links:
Washington University
Argonne National Laboratory

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.