We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Computer Program Confirms Relationship of cfDNA and Tumor DNA

By LabMedica International staff writers
Posted on 16 Nov 2017
Print article
Image: Circulating tumor DNA (ct or cfDNA) is found in serum and plasma fractions from blood. The mechanism of cfDNA release is unknown, though apoptosis, necrosis, and active secretion from tumor cells have been hypothesized (Photo courtesy of Wikimedia Commons).
Image: Circulating tumor DNA (ct or cfDNA) is found in serum and plasma fractions from blood. The mechanism of cfDNA release is unknown, though apoptosis, necrosis, and active secretion from tumor cells have been hypothesized (Photo courtesy of Wikimedia Commons).
Cancer researchers have developed an accurate, scalable approach for monitoring cell-free tumor DNA from blood samples.

Development of this approach was based on the hypothesis that whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood. However, the genome-wide concordance between cfDNA in blood samples and tumor biopsies was uncertain.

To confirm the relationship between cfDNA in the blood and DNA from cancer cells in tumors, investigators at the Broad Institute of the Massachusetts Institute of Technology and Harvard University (Cambridge, MA, USA) developed ichorCNA, a computer program able to analyze DNA fragments for mutation patterns nearly universal in cancer genomes, and as a result able to identify cancers with both known and unknown mutations. The ichorCNA, software quantified tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations.

The investigators reported in the November 6, 2017, online edition of the journal Nature Communications, that they used ichorCNA to analyze 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients had at least 10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing.

Using whole-exome sequencing, the investigators validated the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients that had more than 10% tumor cfDNA in the serum.

"Our study has demonstrated that we can get a cancer whole exome reliably, from blood; that it reflects the matched tumor biopsy; and that it can be done for a significant fraction of patients with metastatic cancer," said first author Dr. Viktor Adalsteinsson, leader of the blood biopsy team at the Broad Institute. "This validation suggests that we can use blood biopsies for large-scale genomic characterization of disease in patients with metastatic cancer. Our ultimate hope is to use blood biopsies to exhaustively search for and characterize even the smallest remnants of tumors, and, as tumors evolve in more advanced stages of cancer, developing resistance or becoming metastatic, we might access time points that could be pivotal in deciding which therapies are right for that patient."

Related Links:
Broad Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.