We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Ferrite Nanoparticles for Hyperthermic Cancer Therapeutics

By LabMedica International staff writers
Posted on 08 Nov 2017
Print article
A novel type of nontoxic magnetic nanoparticles shows potential for treating malignant tumor cells through controlled hyperthermia.

For hyperthermia to be used under clinical conditions for cancer therapeutics the temperature regulation needs to be precise and accurately controllable. In the case of the metal nanoparticles used for such activities, a high coercivity is a prerequisite in order to couple more energy in a single heating cycle for efficient and faster differential heating. Coercivity is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized.

Ferromagnetic materials with high coercivity are called magnetically hard materials, and are used to make permanent magnets. Materials with low coercivity are said to be magnetically soft. The latter are used in transformer and inductor cores, recording heads, microwave devices, and magnetic shielding.

Chemically stable Co–Zn ferrite nanoparticles have typically not been used in self-regulating hyperthermia temperature applications to date due to their low Curie temperature (the temperature at which certain materials lose their permanent magnetic properties), usually accompanied by a poor coercivity.

Tumor cells can be attacked and killed by hyperthermic nanoparticles without affecting normal tissue if the temperature of the particles can be controlled accurately within a range of 42°C to 45°C. To accomplish this task, investigators at the University of Surrey (United Kingdom) developed novel Cr3+ substituted Co–Zn ferrite nanoparticles, whose Curie temperature was 45.7 °C. Under clinically acceptable magnetic field conditions, the temperature of these nanoparticle suspensions could be self-regulated to 44.0°C.

The investigators reported in the October 7, 2017, issue of the journal Nanoscale that evaluation of the in vitro cytotoxicity of the nanoparticles showed a low toxicity, which indicated that this novel set of magnetic nanoparticles should be appropriate for use in self-regulating hyperthermia therapeutics.

Senior author Dr. Ravi Silva, head of the advanced technology institute at the University of Surrey, said, "This could potentially be a game changer in the way we treat people who have cancer. If we can keep cancer treatment sat at a temperature level high enough to kill the cancer, while low enough to stop harming healthy tissue, it will prevent some of the serious side effects of vital treatment. It is a very exciting development which, once again, shows that the University of Surrey research is at the forefront of nanotechnologies - whether in the field of energy materials or, in this case, healthcare."

Related Links:
University of Surrey

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.