We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




X-ray Study Explains How Takinib Inhibits TNF-alpha

By LabMedica International staff writers
Posted on 29 Aug 2017
Print article
Image: A molecular model of Takinib, a drug-like molecule that modulates the TNF-alpha inflammatory response, which is at the center of a variety of diseases (Photo courtesy of Duke University).
Image: A molecular model of Takinib, a drug-like molecule that modulates the TNF-alpha inflammatory response, which is at the center of a variety of diseases (Photo courtesy of Duke University).
Takinib, a selective TAK1 inhibiting drug, has been shown to broaden the therapeutic efficacy of TNF-alpha (Tumor necrosis factor-alpha) inhibition for treating cancer and autoimmune diseases.

TAK1 (also known as MAP3K7 or mitogen-activated protein kinase kinase kinase 7) is a key mediator between survival and cell death in TNF-alpha-mediated signaling. TNF-alpha is a cytokine that has a wide variety of functions. It can cause cytolysis of certain tumor cell lines and is a potent pyrogen, causing fever by direct action or by stimulation of interleukin-1 secretion. It can stimulate cell proliferation and induce cell differentiation under certain conditions.

Investigators at Duke University (Durham, NC, USA) recently described the compound Takinib, a potent and selective TAK1 inhibitor that induced apoptosis following TNF-alpha stimulation in cell models of rheumatoid arthritis and metastatic breast cancer.

The investigators used X-ray crystallography to demonstrate that Takinib was an inhibitor of autophosphorylated and non-phosphorylated TAK1 that bound within the ATP-binding pocket and inhibited TAK1 by slowing down the rate-limiting step of TAK1 activation.

Overall, the investigators saw Takinib as an attractive starting point for the development of inhibitors that sensitize cells to TNF-alpha-induced cell death, with general implications for cancer and autoimmune disease treatment.

"The delicate balance between survival and death is often disrupted in disease, and this molecule is able to target the process," said senior author Dr. Timothy Haystead, professor of pharmacology and cancer biology at Duke University. "This compound could potentially enhance the positive parts of TNF-alpha by only targeting tumor cells or inflammatory cells."

The study was published in the August 17, 2017, issue of the journal Cell Chemical Biology.

Related Links:
Duke University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.