We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Time-Release Approach for Treating Type II Diabetes

By LabMedica International staff writers
Posted on 13 Jun 2017
Print article
Image: A glucose-controlling drug (blue) is shown completely dissolving after 24 hours in the body of a mouse in the top two photos. In the bottom two images, a newly optimized version of a diabetes treatment forms a \"depot\" for controlled release that persists more than 24 hours (Photo courtesy of Dr. Ashutosh Chilkoti, Duke University).
Image: A glucose-controlling drug (blue) is shown completely dissolving after 24 hours in the body of a mouse in the top two photos. In the bottom two images, a newly optimized version of a diabetes treatment forms a \"depot\" for controlled release that persists more than 24 hours (Photo courtesy of Dr. Ashutosh Chilkoti, Duke University).
A novel approach to treating type II diabetes is based on a timed-release suspension of glucagon-like peptide-1 (GLP1) embedded in a thermosensitive elastin-like polypeptide complex.

Stimulation of the GLP1 receptor (GLP1R) is a useful treatment strategy for type II diabetes. GLP1R is known to be expressed in pancreatic beta cells. Activated GLP1R stimulates the adenylyl cyclase pathway, which results in increased insulin synthesis and release of insulin. Consequently, GLP1R has been a target for developing drugs usually referred to as GLP1R agonists to treat diabetes. GLP1R is also expressed in the brain where it is involved in the control of appetite. However, the native ligand for the GLP1 receptor has a short half-life owing to enzymatic inactivation and rapid clearance.

In order to increase the half-life of GLP1, investigators at Duke University (Durham, NC, USA) developed a method that embedded GLP1 in a heat-sensitive elastin-like polypeptide (ELP) in a solution that could be injected into the skin through a standard needle. Once injected, the solution reacted with body heat to form a biodegradable gel-like deposit that slowly released the drug as it dissolved.

The investigators worked with mouse and monkey diabetes models. They reported in the June 5, 2017, online edition of the journal Nature Biomedical Engineering that a subcutaneous depot formed after a single injection of GLP1 fused to a thermosensitive elastin-like polypeptide and displayed zero-order release kinetics and circulation times of up to 10 days in mice and 17 days in monkeys. The optimized pharmacokinetics led to 10 days of glycemic control in three different mouse models of diabetes, as well as the reduction of glycosylated hemoglobin levels and weight gain in obese mice treated once weekly for eight weeks.

"Although we have pursued this method in the past, a researcher in my lab systematically worked to vary the design of the delivery biopolymer at the molecular level and found a sweet spot that maximized the duration of the drug's delivery from a single injection," said senior author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "By doing so, we managed to triple the duration of this short-acting drug for type II diabetes, outperforming other competing designs."

Related Links:
Duke University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.