We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Tracing Technique Untangles Brain Circuit Networks

By LabMedica International staff writers
Posted on 09 Jul 2013
Print article
Image: Neurons in the basal ganglia (Photo courtesy of Anatol Kreitzer, PhD, Gladstone Institutes).
Image: Neurons in the basal ganglia (Photo courtesy of Anatol Kreitzer, PhD, Gladstone Institutes).
High-resolution mapping has uncovered the architecture of neural circuits leading to the basal ganglia, which could promote research into disorders such as Parkinson’s disease (PD) and Huntington’s disease.

Researchers at the Gladstone Institutes (San Francisco, CA, USA) and the Salk Institute (San Diego, CA, USA) combined mouse models with a sophisticated tracing technique, known as the monosynaptic rabies virus (MRV) system, to assemble brain-wide maps of the striatum of neurons that connect with the basal ganglia, integrating information from multiple brain regions to shape motor learning. The two major projection cell types in the striatum target different downstream basal ganglia targets and have opposing effects on motivated behavior, yet differential innervation of these neuronal subtypes is not well understood.

To examine whether input specificity provides a basis for information segregation, the researchers used a MRV system to generate brain-wide maps of neurons that form synapses with direct- or indirect-pathway striatal projection neurons. They found that sensory cortical and limbic structures mostly innervated the direct pathway, whereas motor cortex structures preferentially targeted the indirect pathway. The researchers also found that thalamostriatal input, dopaminergic input, and input from specific cortical layers were similar in both pathways. The study was published on June 26, 2013, in Neuron.

“Taming and harnessing the rabies virus is ingenious in the exquisite precision that it offers compared with previous methods, which were messier with a much lower resolution,” said study coauthor Anatol Kreitzer, PhD, of the Gladstone Institutes. “We took the approach one step further by activating the tracer genetically, which ensures that it is only turned on in specific neurons in the basal ganglia. This is a huge leap forward technologically, as we can be sure that we’re following only the networks that connect to particular kinds of cells in the basal ganglia.”

“These initial results should be treated as a resource not only for decoding how this network guides the vast array of very distinct brain functions, but also how dysfunctions in different parts of this network can lead to different neurological conditions,” added coauthor Edward Callaway, PhD, of the Salk Institute. “If we can use the rabies virus system to pinpoint distinct network disruptions in distinct types of disease, we could significantly improve our understanding of these diseases’ underlying molecular mechanisms and get even closer to developing solutions for them.”

The MRV system, originally developed in 2007 and refined by Dr. Callaway and other researchers for targeting specific cell types in 2010, uses a modified version of the rabies virus to “infect” a brain region, which in turn targets and infects neurons that are connected to it. When the system was applied in genetic mouse models, the team could see specifically how sensory, motor, and reward structures in the brain connected to medium spiny neurons (MSNs) in the basal ganglia.

Related Links:

Gladstone Institutes
Salk Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.