We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Signaling Protein Stabilizes Heterochromatin and Suppresses Tumor Growth

By LabMedica International staff writers
Posted on 20 Jun 2013
Print article
Genomics researchers have found that the unphosphorylated form of the STAT5A signaling protein functions as a tumor suppressor by stabilizing heterochromatin, which blocks the expression of multiple oncogenes.

STAT5A (signal transducer and activator of transcription 5A) is a member of the STAT protein family, which regulates many aspects of cell growth, survival, and differentiation. Disruption of this signaling pathway is frequently observed in primary tumors and leads to increased angiogenesis and enhanced tumor survival. Knockout studies have provided evidence that STAT proteins are involved in the development and function of the immune system, and play a role in maintaining immune tolerance and tumor surveillance. STAT5A is activated by and it mediates the responses of many cell ligands, such as interleukins and growth hormones.

Investigators at the University of California, San Diego School of Medicine (USA; www.ucsd.edu) and their colleagues at the University of Rochester Medical Center (NY, USA) worked with a mouse xenograft colon cancer model to study the effects of STAT5A.

They reported in the June 3, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that unphosphorylated STAT5A bound to the heterochromatin protein 1-alpha (HP1-alpha) and stabilized the heterochromatin. Expressing unphosphorylated STAT5A or HP1-alpha inhibited colon cancer growth in the mouse xenograft model.

Previous experiments conducted in fruit flies had shown that the unphosphorylated form of STAT5A caused chromatin to condense into heterochromatin, while the phosphorylated form prompted dispersal and loss of heterochromatin, furthering gene expression.

“Unphosphorylated STAT promotes and stabilizes heterochromatin formation, which in turn suppresses gene transcription,” said senior author Dr. Willis X. Li, professor of medicine at the University of California, San Diego School of Medicine. “When we expressed either HP1-alpha (the central component of heterochromatin) or unphosphorylated STAT5A in human cancer cells, many genes important for cancer growth are suppressed. These cancer cells do not grow as fast or big as their control parental cancer cells in mouse xenograft models.”

Transcriptome profiling showed that expressing unphosphorylatable STAT5A had similar effects to overexpressing HP1-alpha in global gene expression. The majority of the genes commonly repressed by unphosphorylated STAT5A and HP1-alpha have been implicated in cancer development, and down regulation, somatic mutations, and deletions of STAT5 genes are found in certain human cancers.

“We are in the process of identifying small molecule drugs that may promote heterochromatin formation without stopping cell division or causing cell death,” said Dr. Li. “These drugs, if found, may be effective in treating cancers with fewer side effects.”

Related Links:
University of California, San Diego School of Medicine
University of Rochester Medical Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.