Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Blocking Cell Movement Explored to Stop the Spread of Cancer

By BiotechDaily International staff writers
Posted on 14 Jul 2014
Image: Migrating embryonic neural crest cells (Photo courtesy of UCL - University College London).
Image: Migrating embryonic neural crest cells (Photo courtesy of UCL - University College London).
Learning more about how cells travel through the body could lead to innovative new treatments to block cancer cells from metastasizing and causing secondary tumors, according to new research.

Scientists discovered that cells can change into an invasive, liquid-like state to readily move through the thin channels in the human body. This transformation is activated by chemical signals, which could be blocked to stop cancer cells from spreading. Most cancer deaths are not caused by to primary tumors, but to secondary tumors in major organs, such as the lungs or brain, caused by cells moving from the original tumor to other places in the body.

The study led by the University College London (UCL; UK) researchers and published July 8, 2014, in the Journal of Cell Biology, used embryonic cells to better determine how groups of cells move in a developmental process similar to that exploited by cancer to spread around the body. The scientists reported that a molecule called lysophosphatidic acid (LPA) transforms cells from a solid-like to a liquid-like state, allowing cells to flow between normal tissues in the body. They were able to turn off the signals from LPA, stopping the cells from moving down the narrow, blood vessel-like channels.

Lead scientist Prof. Roberto Mayor, from the UCL department of cell and developmental biology, said, “We have found a way to stop the movement of embryonic cells by blocking LPA signals. It is likely that a similar mechanism operates during cancer invasion, which suggests a possible alternative which cancer treatments might work in the future, if therapies can be targeted to limit the tissue fluidity of tumors. Our findings are important for the fields of cell, developmental and cancer biology. Previously, we thought cells only moved around the body either individually or as groups of well-connected cells. What we have discovered is a hybrid state where cells loosen their links to neighboring cells but still move en masse together, like a liquid. Moreover, we can stop this movement.”

Related Links:

University College London



view channel
Image: Micrograph showing immunofluorescence of skin differentiation markers for basal keratinocytes (Photo courtesy of Dr. Russ Carstens, University of Pennsylvania).

Alternate Splicing Proteins Critically Linked to Skin and Organ Development

Two proteins that regulate alternative splicing in epithelial cells have been linked to the proper development of the skin and protective layers that surround other organs in the body. Two steps are... Read more

Drug Discovery

view channel
Image: Use of catchphrase terms like “breakthrough” and “promising” in public news media presenting new drugs tends to result in incorrect assumptions and conclusions about the meaning and significance of criteria for FDA breakthrough-designated and accelerated-approval drugs (Photo courtesy of Dartmouth Institute).

Words That Inappropriately Enhance Perception of New Drug’s Effectiveness

Researchers have found that using the words “breakthrough” and “promising” in presenting a new drug to the general public often has a dramatic effect on judgment about its effectiveness.... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.