Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Tissue-Penetrating Light Releases Chemotherapy inside Cancer Cells

By BiotechDaily International staff writers
Posted on 02 Mar 2014
Researchers have developed an advanced way of using light to convey chemotherapy safely to cancer cells. A light-activated drug delivery system is particularly promising, because it can accomplish spatial and temporal control of drug release.

Drs. Jeffrey Zink, professor of chemistry and biochemistry, and Fuyu Tamanoi, professor of microbiology, immunology, and molecular genetics, and colleagues, from the University of California, Los Angeles’ (UCLA) Jonsson Comprehensive Cancer Center (JCCC; Los Angeles, USA) published their findings February 20, 2014, in the journal Small.

Finding ways to deliver and release anticancer drugs in a controlled way that only targets the tumor can greatly decrease the amount of side effects from treatment, and greatly increase the cancer-killing efficacy of the drugs. The challenges of treating cancer frequently comes from the difficulty of getting anticancer chemotherapy drugs to tumor cells without damaging healthy tissue in the process. Many cancer patients experience treatment side effects that are the result of drug exposure to healthy tissues.

A major challenge in the development of light-activated drug delivery is to design a system that can respond to tissue-penetrating light. Drs. Tamanoi and Zink joined their diverse teams and collaborated with Dr. Jean-Olivier Durand at University of Montpellier, France to develop a new type of microscopic particles (nanoparticles) that can absorb energy from tissue-penetrating light that releases pharmaceutical agents in cancer cells.

These new nanoparticles are armed with specially designed nanovalves that can control release of anticancer drugs from thousands of pores, or tiny tubes, which hold molecules of chemotherapy drugs within them. The ends of the pores are blocked with capping molecules that hold the drug in similar to a cork in a bottle. The nanovalves contain special molecules that respond to the energy from two-photon light exposure, which opens the pores and releases the anticancer drugs. The performance of the nanoparticles was demonstrated in the laboratory using human breast cancer cells.

Because the effective depth range of the two-photon laser in the infrared red wavelength can reach 4 cm from the skin surface, this delivery system is best suited for tumors that can be reached within that range, which possibly include stomach breast, colon, and ovarian cancers.

Another facet of the nanoparticles is that they are fluorescent and therefore can be monitored in the body with molecular imaging techniques. This allows the researchers to track the progress of the nanoparticle into the cancer cell to safeguard that it is in its target before light activation. This ability to track a targeted therapy to its target has been called “theranostics” in the scientific nomenclature. “We have a wonderful collaboration,” said Dr. Zink. “When the JCCC brings together totally diverse fields, in this case a physical chemist and a cell signaling scientist, we can do things that neither one could do alone.”

“Our collaboration with scientists at Charles Gerhardt Institute was important to the success of this two-photon activated technique,” said Dr. Tamanoi. “It provides controls over drug delivery to allow local treatment that dramatically reduces side effects.”

Related Links:

University of California, Los Angeles’ Jonsson Comprehensive Cancer Center




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.