Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Worm-Like Nanoparticles Used to Kill Breast Cancer Cells

By BiotechDaily International staff writers
Posted on 26 Dec 2013
Image: Microscope images of the worm-like, rod-like, micelle- and vesicle-shaped nanoparticles (Photo courtesy of University of New South Wales, Australia).
Image: Microscope images of the worm-like, rod-like, micelle- and vesicle-shaped nanoparticles (Photo courtesy of University of New South Wales, Australia).
Cylinder-shaped nanoparticles have been shown to be seven times more lethal than traditional spherical ones when delivering drugs to breast cancer cells, an international team of researchers has discovered.

Moreover, the worm-shaped drug delivery vehicles are not anymore toxic to healthy cells according to the study, which was published December 2013 in the journal Polymer Chemistry. In this study, different polymeric nanoparticle shapes (including spherical micelle, cylindrical micelle, and vesicles) were examined, and the early findings suggest shape plays an important role in the cell uptake and toxicity response. The project was co-led by Assoc. Prof. Cyrille Boyer, from the University of New South Wales (UNSW) School of Chemical Engineering (Sydney, Australia) and the Australian Center for NanoMedicine (Sydney), and Prof. Thomas Davis from Monash University (Melbourne, Australia), and involved Dr. Bunyamin Karagoz from Istanbul Technical University (Turkey).

Developing nanoparticles to target drugs directly to specific regions of the body is an increasing field of medicine, and these new findings suggest changing the shape of nanoparticles could slash both treatment costs and side effects. “What we’ve discovered is that a different shaped nanoparticle can have a very different effect on cancer cells, even with the same amount of drug,” said Dr. Boyer. “However there is still a lot of work to do and we need to test the nanoparticles in vitro with a range of cancer cells.”

Research had earlier mostly focused on spherical drug delivery systems as they are easier to make, but this new study additionally offers a simple and inexpensive approach to devising three different nanoparticle shapes: vesicular, spherical, and tubular or “worm-like.”

The researchers are now looking into whether cylindrical shape nanoparticles also deliver drugs more effectively to other types of cancers.

Related Links:

University of New South Wales School of Chemical Engineering
Monash University
Istanbul Technical University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This micrograph depicts the presence of aerobic Gram-negative Neisseria meningitidis diplococcal bacteria; magnification 1150x (Photo courtesy of the CDC - US Centers for Disease Control and Prevention).

Infection by Meningitis Bacteria Depends on Dimerization State of Certain Host Cell Proteins

A team of molecular microbiologists has untangled the complex three-way interaction between the non-integrin laminin receptor (LAMR1), galectin-3 (Gal-2), and the pathogenic bacterium Neisseria meningitidis.... Read more

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Biochemistry

view channel

Discovery of Pain Receptor on T-cells Could Help Treat Autoimmune Disorders

Researchers have discovered that T-cells are activated by a pain receptor. The new findings revealed that the receptor helps control intestinal inflammation in mice and that its activity can be adjusted, providing a potential new target for treating certain autoimmune disorders, such as Crohn’s disease and possibly multiple... Read more

Lab Technologies

view channel
Image: Yale West Campus is organized into research institutes and core facilities — all designed to promote collaboration and interdisciplinary dialogue (Photo courtesy of Yale University).

American and European Partners Establish a Microscopy Center of Excellence

A prominent American university has announced a partnership agreement with a major European producer of microscopes and imaging tools that will establish a center for the use of cutting-edge imaging technologies... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.