Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Worm-Like Nanoparticles Used to Kill Breast Cancer Cells

By BiotechDaily International staff writers
Posted on 26 Dec 2013
Print article
Image: Microscope images of the worm-like, rod-like, micelle- and vesicle-shaped nanoparticles (Photo courtesy of University of New South Wales, Australia).
Image: Microscope images of the worm-like, rod-like, micelle- and vesicle-shaped nanoparticles (Photo courtesy of University of New South Wales, Australia).
Cylinder-shaped nanoparticles have been shown to be seven times more lethal than traditional spherical ones when delivering drugs to breast cancer cells, an international team of researchers has discovered.

Moreover, the worm-shaped drug delivery vehicles are not anymore toxic to healthy cells according to the study, which was published December 2013 in the journal Polymer Chemistry. In this study, different polymeric nanoparticle shapes (including spherical micelle, cylindrical micelle, and vesicles) were examined, and the early findings suggest shape plays an important role in the cell uptake and toxicity response. The project was co-led by Assoc. Prof. Cyrille Boyer, from the University of New South Wales (UNSW) School of Chemical Engineering (Sydney, Australia) and the Australian Center for NanoMedicine (Sydney), and Prof. Thomas Davis from Monash University (Melbourne, Australia), and involved Dr. Bunyamin Karagoz from Istanbul Technical University (Turkey).

Developing nanoparticles to target drugs directly to specific regions of the body is an increasing field of medicine, and these new findings suggest changing the shape of nanoparticles could slash both treatment costs and side effects. “What we’ve discovered is that a different shaped nanoparticle can have a very different effect on cancer cells, even with the same amount of drug,” said Dr. Boyer. “However there is still a lot of work to do and we need to test the nanoparticles in vitro with a range of cancer cells.”

Research had earlier mostly focused on spherical drug delivery systems as they are easier to make, but this new study additionally offers a simple and inexpensive approach to devising three different nanoparticle shapes: vesicular, spherical, and tubular or “worm-like.”

The researchers are now looking into whether cylindrical shape nanoparticles also deliver drugs more effectively to other types of cancers.

Related Links:

University of New South Wales School of Chemical Engineering
Monash University
Istanbul Technical University



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

Bio-Innovation Agreement to Strengthen Ties between Canada and Israel

A recently signed agreement aims at encouraging academic and entrepreneurial ties in the field of bio-innovation between a Canadian and an Israeli university. The agreement will establish a strong relationship between the University of Toronto (Canada) – in the form of the Institute of Biomaterials and Biomedical Engineering... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.