Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Worm-Like Nanoparticles Used to Kill Breast Cancer Cells

By BiotechDaily International staff writers
Posted on 26 Dec 2013
Image: Microscope images of the worm-like, rod-like, micelle- and vesicle-shaped nanoparticles (Photo courtesy of University of New South Wales, Australia).
Image: Microscope images of the worm-like, rod-like, micelle- and vesicle-shaped nanoparticles (Photo courtesy of University of New South Wales, Australia).
Cylinder-shaped nanoparticles have been shown to be seven times more lethal than traditional spherical ones when delivering drugs to breast cancer cells, an international team of researchers has discovered.

Moreover, the worm-shaped drug delivery vehicles are not anymore toxic to healthy cells according to the study, which was published December 2013 in the journal Polymer Chemistry. In this study, different polymeric nanoparticle shapes (including spherical micelle, cylindrical micelle, and vesicles) were examined, and the early findings suggest shape plays an important role in the cell uptake and toxicity response. The project was co-led by Assoc. Prof. Cyrille Boyer, from the University of New South Wales (UNSW) School of Chemical Engineering (Sydney, Australia) and the Australian Center for NanoMedicine (Sydney), and Prof. Thomas Davis from Monash University (Melbourne, Australia), and involved Dr. Bunyamin Karagoz from Istanbul Technical University (Turkey).

Developing nanoparticles to target drugs directly to specific regions of the body is an increasing field of medicine, and these new findings suggest changing the shape of nanoparticles could slash both treatment costs and side effects. “What we’ve discovered is that a different shaped nanoparticle can have a very different effect on cancer cells, even with the same amount of drug,” said Dr. Boyer. “However there is still a lot of work to do and we need to test the nanoparticles in vitro with a range of cancer cells.”

Research had earlier mostly focused on spherical drug delivery systems as they are easier to make, but this new study additionally offers a simple and inexpensive approach to devising three different nanoparticle shapes: vesicular, spherical, and tubular or “worm-like.”

The researchers are now looking into whether cylindrical shape nanoparticles also deliver drugs more effectively to other types of cancers.

Related Links:

University of New South Wales School of Chemical Engineering
Monash University
Istanbul Technical University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.