Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Worm-Like Nanoparticles Used to Kill Breast Cancer Cells

By BiotechDaily International staff writers
Posted on 26 Dec 2013
Image: Microscope images of the worm-like, rod-like, micelle- and vesicle-shaped nanoparticles (Photo courtesy of University of New South Wales, Australia).
Image: Microscope images of the worm-like, rod-like, micelle- and vesicle-shaped nanoparticles (Photo courtesy of University of New South Wales, Australia).
Cylinder-shaped nanoparticles have been shown to be seven times more lethal than traditional spherical ones when delivering drugs to breast cancer cells, an international team of researchers has discovered.

Moreover, the worm-shaped drug delivery vehicles are not anymore toxic to healthy cells according to the study, which was published December 2013 in the journal Polymer Chemistry. In this study, different polymeric nanoparticle shapes (including spherical micelle, cylindrical micelle, and vesicles) were examined, and the early findings suggest shape plays an important role in the cell uptake and toxicity response. The project was co-led by Assoc. Prof. Cyrille Boyer, from the University of New South Wales (UNSW) School of Chemical Engineering (Sydney, Australia) and the Australian Center for NanoMedicine (Sydney), and Prof. Thomas Davis from Monash University (Melbourne, Australia), and involved Dr. Bunyamin Karagoz from Istanbul Technical University (Turkey).

Developing nanoparticles to target drugs directly to specific regions of the body is an increasing field of medicine, and these new findings suggest changing the shape of nanoparticles could slash both treatment costs and side effects. “What we’ve discovered is that a different shaped nanoparticle can have a very different effect on cancer cells, even with the same amount of drug,” said Dr. Boyer. “However there is still a lot of work to do and we need to test the nanoparticles in vitro with a range of cancer cells.”

Research had earlier mostly focused on spherical drug delivery systems as they are easier to make, but this new study additionally offers a simple and inexpensive approach to devising three different nanoparticle shapes: vesicular, spherical, and tubular or “worm-like.”

The researchers are now looking into whether cylindrical shape nanoparticles also deliver drugs more effectively to other types of cancers.

Related Links:

University of New South Wales School of Chemical Engineering
Monash University
Istanbul Technical University



SLAS - Society for Laboratory Automation and Screening
RANDOX LABORATORIES
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Genomics/Proteomics

view channel

MicroRNA Panel Identifies Mild Brain Trauma in a Mouse Model

A study conducted on a mouse model found that a panel of 13 serum microRNAs (miRNAs) could be used to identify the severity of damage to the brain and the risk of developing adverse effects following mild traumatic brain injury (mTBI). MTBI is a heterogeneous injury that may lead to the development of neurological and... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: Mouse kidneys, liver, and pancreas imaged after treatment with a variety of protocols: a saline solution, Scale, SeeDB (see deep brain), CUBIC, and carotid body (CB) perfusion (which was used in this study) (Photo courtesy of RIKEN Quantitative Biology Center).

Nearly Transparent Mice Offers Potential of Whole-Organism Imaging

Japanese researchers have developed a method that combines tissue decolorization and light-sheet fluorescent microscopy to take extremely detailed images of the interior of individual organs and even entire... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.