Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Protein Family May Help in Cancer Therapy

By BiotechDaily International staff writers
Posted on 19 Aug 2013
Print article
British researchers have discovered the key role played by a group of proteins in the process of mitosis. Figuring out how to regulate them may give scientists a way to kill cancerous cells.

The study, published by investigators from Warwick Medical School (Coventry, UK) on August 5, 2013, in the Journal of Cell Biology, emphasized the role of a newly identified team of proteins, TACC3-ch-TOG-clathrin, in forming inter-microtubule bridges that stabilize the kinetochore fibers (K-fibers) used in mitosis. When a cell divides, it generates a mitotic spindle that then makes sure that the chromosomes are divided equally between the two new cells. Failure to do so effectively can lead to complications; those cells with either too few or too many chromosomes are at risk of becoming cancerous.

To achieve this, the mitotic spindle uses K-fibers to allow for chromosome traveling around the cell. These fibers are made up of even smaller microtubules, bundled together by what may be termed “bridges,” which is where the team of proteins comes in. Clathrin is a protein that is involved in the process of membrane operating in interphase cells, but it changes roles during mitosis and localizes to the mitotic spindle where it works with TACC3 and ch-TOG to form these bridges. When TACC3 is taken from the cell, the clathrin is no longer able to bind the microtubules. Other bridges do exist but they only represent approximately 40% of the total so the microtubules, and as a result the mitotic spindle, are considerably feebler. By developing technology to rapidly remove the team of proteins, the researchers have been able to determine that removing TACC3 allows the scientists to force the cells to die.

Prof. Royle explained, “That sounds like a negative—the idea of a cell dying. However it’s vital to remember that most adult cells are no longer dividing and what we are suggesting is being able to shut down mitosis in those that are multiplying.”

There are other functions tied to cell division that would need to be taken into account, such as repairing damage, but Dr. Royle confidently believes that this is still a significant move forward in destroying cancerous cells. He added, “Though it isn’t yet capable of being fully targeted to kill only cancerous cells, neither are the current treatments. Existing drugs like taxanes, for example, do not discriminate between cancerous cells and normal cells. Hopefully the next development will allow us to use a greater understanding of how this team of proteins can be used in a more clinical environment.”

Related Links:

Warwick Medical School



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.