Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Silencing a Specific Set of Neurons Prevents Itching Not Controllable by Antihistamine Treatment

By BiotechDaily International staff writers
Posted on 17 Jun 2013
Itching in response to release of histamine is modulated by a set of neurons that is functionally distinct from that modulating itching not related to histamine, and these two sets of neurons can be selectively targeted and silenced.

Histaminergic itch (modulated by histamine) develops when histamine triggers an inflammatory immune response to foreign agents, such as occurs in hay fever or following an insect bite. Nonhistaminergic itch (not modulated by histamine) is seen in chronic syndromes such as dry skin itch and allergic dermatitis.

Investigators the Hebrew University of Jerusalem (Israel) and Harvard Medical School (Boston, MA, USA) studied these two types of itching by employing a strategy of reversibly silencing specific subsets of mouse sensory axons through targeted delivery of a charged sodium-channel blocker.

They found that functional blockade of histamine itch did not affect the itch evoked by chloroquine or the peptide SLIGRL-NH2 (H-Serine-Leucine-Isoleucine-Glycine-Arginine-Leucine-NH2). This peptide induces itching by binding to proteinase-activated receptor-2 (PAR2), which is not linked to histamine. Furthermore, blocking PAR2 binding did not prevent histaminerigic itch. Silencing of itch-generating fibers did not reduce pain-associated behavior.

The investigators concluded that, "These findings support the presence of functionally distinct sets of itch-generating neurons and suggest that targeted silencing of activated sensory fibers may represent a clinically useful antipruritic therapeutic approach for histaminergic and nonhistaminergic pruritus."

The study was published in the May 19, 2013, online edition of the journal Nature Neuroscience.

Related Links:

Hebrew University of Jerusalem
Harvard Medical School



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.