Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
BioConferenceLive

Silencing a Specific Set of Neurons Prevents Itching Not Controllable by Antihistamine Treatment

By BiotechDaily International staff writers
Posted on 17 Jun 2013
Itching in response to release of histamine is modulated by a set of neurons that is functionally distinct from that modulating itching not related to histamine, and these two sets of neurons can be selectively targeted and silenced.

Histaminergic itch (modulated by histamine) develops when histamine triggers an inflammatory immune response to foreign agents, such as occurs in hay fever or following an insect bite. Nonhistaminergic itch (not modulated by histamine) is seen in chronic syndromes such as dry skin itch and allergic dermatitis.

Investigators the Hebrew University of Jerusalem (Israel) and Harvard Medical School (Boston, MA, USA) studied these two types of itching by employing a strategy of reversibly silencing specific subsets of mouse sensory axons through targeted delivery of a charged sodium-channel blocker.

They found that functional blockade of histamine itch did not affect the itch evoked by chloroquine or the peptide SLIGRL-NH2 (H-Serine-Leucine-Isoleucine-Glycine-Arginine-Leucine-NH2). This peptide induces itching by binding to proteinase-activated receptor-2 (PAR2), which is not linked to histamine. Furthermore, blocking PAR2 binding did not prevent histaminerigic itch. Silencing of itch-generating fibers did not reduce pain-associated behavior.

The investigators concluded that, "These findings support the presence of functionally distinct sets of itch-generating neurons and suggest that targeted silencing of activated sensory fibers may represent a clinically useful antipruritic therapeutic approach for histaminergic and nonhistaminergic pruritus."

The study was published in the May 19, 2013, online edition of the journal Nature Neuroscience.

Related Links:

Hebrew University of Jerusalem
Harvard Medical School



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.