Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Silencing a Specific Set of Neurons Prevents Itching Not Controllable by Antihistamine Treatment

By BiotechDaily International staff writers
Posted on 17 Jun 2013
Itching in response to release of histamine is modulated by a set of neurons that is functionally distinct from that modulating itching not related to histamine, and these two sets of neurons can be selectively targeted and silenced.

Histaminergic itch (modulated by histamine) develops when histamine triggers an inflammatory immune response to foreign agents, such as occurs in hay fever or following an insect bite. Nonhistaminergic itch (not modulated by histamine) is seen in chronic syndromes such as dry skin itch and allergic dermatitis.

Investigators the Hebrew University of Jerusalem (Israel) and Harvard Medical School (Boston, MA, USA) studied these two types of itching by employing a strategy of reversibly silencing specific subsets of mouse sensory axons through targeted delivery of a charged sodium-channel blocker.

They found that functional blockade of histamine itch did not affect the itch evoked by chloroquine or the peptide SLIGRL-NH2 (H-Serine-Leucine-Isoleucine-Glycine-Arginine-Leucine-NH2). This peptide induces itching by binding to proteinase-activated receptor-2 (PAR2), which is not linked to histamine. Furthermore, blocking PAR2 binding did not prevent histaminerigic itch. Silencing of itch-generating fibers did not reduce pain-associated behavior.

The investigators concluded that, "These findings support the presence of functionally distinct sets of itch-generating neurons and suggest that targeted silencing of activated sensory fibers may represent a clinically useful antipruritic therapeutic approach for histaminergic and nonhistaminergic pruritus."

The study was published in the May 19, 2013, online edition of the journal Nature Neuroscience.

Related Links:

Hebrew University of Jerusalem
Harvard Medical School



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Electron micrograph of Hepatitis C virus purified from cell culture. Scale bar is 50 nanometers (Photo courtesy of the Center for the Study of Hepatitis C, the Rockefeller University).

Oxidized LDL Predicts Response to Interferon Treatment of Chronic Hepatitis C and May Be a Treatment Option

Oxidized low-density lipoprotein (oxLDL) in the blood was shown to predict responsiveness to interferon treatment in patients with chronic Hepatitis C virus (HCV) infection and to inhibit spread of the... Read more

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.