Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Silencing a Specific Set of Neurons Prevents Itching Not Controllable by Antihistamine Treatment

By BiotechDaily International staff writers
Posted on 17 Jun 2013
Print article
Itching in response to release of histamine is modulated by a set of neurons that is functionally distinct from that modulating itching not related to histamine, and these two sets of neurons can be selectively targeted and silenced.

Histaminergic itch (modulated by histamine) develops when histamine triggers an inflammatory immune response to foreign agents, such as occurs in hay fever or following an insect bite. Nonhistaminergic itch (not modulated by histamine) is seen in chronic syndromes such as dry skin itch and allergic dermatitis.

Investigators the Hebrew University of Jerusalem (Israel) and Harvard Medical School (Boston, MA, USA) studied these two types of itching by employing a strategy of reversibly silencing specific subsets of mouse sensory axons through targeted delivery of a charged sodium-channel blocker.

They found that functional blockade of histamine itch did not affect the itch evoked by chloroquine or the peptide SLIGRL-NH2 (H-Serine-Leucine-Isoleucine-Glycine-Arginine-Leucine-NH2). This peptide induces itching by binding to proteinase-activated receptor-2 (PAR2), which is not linked to histamine. Furthermore, blocking PAR2 binding did not prevent histaminerigic itch. Silencing of itch-generating fibers did not reduce pain-associated behavior.

The investigators concluded that, "These findings support the presence of functionally distinct sets of itch-generating neurons and suggest that targeted silencing of activated sensory fibers may represent a clinically useful antipruritic therapeutic approach for histaminergic and nonhistaminergic pruritus."

The study was published in the May 19, 2013, online edition of the journal Nature Neuroscience.

Related Links:

Hebrew University of Jerusalem
Harvard Medical School



Print article

Channels

Genomics/Proteomics

view channel
Image: The green-labeled cells show a basal cell carcinoma in mouse tail epidermis derived from a single mutant stem cell and expanding out of the normal epidermis stained in red (Photo courtesy of Adriana Sánchez-Danés, Université Libre de Bruxelles).

Stem Cells Not Progenitors Can Trigger Skin Cancer Growth

Cancer researchers have discovered that stem cells can initiate development of malignant skin tumors, while progenitor cells are limited to triggering only benign growths. A progenitor cell is similar... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A 3D nanofiber net formed by the supergelators to trap oil molecules (Photo courtesy of IBN at A*STAR / Institute of Bioengineering and Nanotechnology).

Effective Cleanup with Smart Material That Forms Oil-Trapping Net

Researchers have developed supergelators – an organic oil-scavenging material that rapidly forms a 3D net to trap oil molecules, gelatinizing into solidified masses that can be more easily removed from... Read more

Business

view channel

Sartorius Acquires US Start-up ViroCyt

Sartorius AG (Göttingen, Germany), a pharmaceutical and laboratory equipment provider, has acquired ViroCyt Incorporated (Broomfield, CO, USA), a start-up in the field of rapid virus quantification, in a deal valued at approximately USD 16 million. ViroCyt’s automated platform integrates instruments, software and reagents... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.