Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Antidiabetes Drug Makes Lung Cancer Susceptible to Radiotherapy

By BiotechDaily International staff writers
Posted on 28 May 2013
Metformin, an anitdiabetic drug, has been shown to slow the growth of lung cancer cells and makes them more likely to be killed by radiotherapy.

Scientists from McMaster University (Hamilton, ON, Canada) discovered that metformin acted on the defense mechanisms non-small-cell lung tumors—the most typical form of the disease—use to resist radiotherapy. They published their findings April 30, 2013, in the British Journal of Cancer.

Lung cancer cells typically adapt to radiotherapy by activating survival processes that make them resistant to the treatment and even helps them to grow faster. However, by examining lung cancer cells grown in the lab and in mice, the researchers showed that metformin reverses this effect, once again making them sensitive to radiotherapy. Significantly, the researchers utilized “real life” levels of the drug in their experiments, similar to those already used for treating diabetes.

Metformin seems to work by enhancing the damage-detection signals sent within cancer cells in response to radiotherapy, over-riding the cells’ survival mechanisms. These signals blocks cancer cells from producing the new proteins they need to grow rapidly, prevents them from making new cells and eventually encourages them to die.

Dr. Theodoros Tsakiridis, study author and a radiation oncologist at the Juravinski Cancer Center and McMaster University, said, “Our study shows that the diabetes drug metformin can stop lung cancer cells from growing and makes them more sensitive to treatment by radiotherapy. “We’re now working with other institutions to develop a clinical trial that will investigate metformin in lung cancer patients treated with radiotherapy. If we can prove that this works in patients then we could have a potentially powerful weapon in the fight against the disease.”

In spite radiotherapy being an effective treatment for many cancers, it has a limited effect for lung cancer patients. Dr. Kat Arney, science information manager at Cancer Research UK (London, UK), said, “Lung cancer remains one of the most difficult cancers to treat, with less than 10% of people surviving the disease for at least five years. We urgently need new and better ways of treating lung cancer and this research takes us a step towards making radiotherapy a more potent treatment. To improve the chances for lung cancer patients, Cancer Research UK is planning to increase significantly its investment in research into this form of the disease, so that patients can benefit from new and improved treatments sooner.”

Related Links:

McMaster University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.