Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Antidiabetes Drug Makes Lung Cancer Susceptible to Radiotherapy

By BiotechDaily International staff writers
Posted on 28 May 2013
Metformin, an anitdiabetic drug, has been shown to slow the growth of lung cancer cells and makes them more likely to be killed by radiotherapy.

Scientists from McMaster University (Hamilton, ON, Canada) discovered that metformin acted on the defense mechanisms non-small-cell lung tumors—the most typical form of the disease—use to resist radiotherapy. They published their findings April 30, 2013, in the British Journal of Cancer.

Lung cancer cells typically adapt to radiotherapy by activating survival processes that make them resistant to the treatment and even helps them to grow faster. However, by examining lung cancer cells grown in the lab and in mice, the researchers showed that metformin reverses this effect, once again making them sensitive to radiotherapy. Significantly, the researchers utilized “real life” levels of the drug in their experiments, similar to those already used for treating diabetes.

Metformin seems to work by enhancing the damage-detection signals sent within cancer cells in response to radiotherapy, over-riding the cells’ survival mechanisms. These signals blocks cancer cells from producing the new proteins they need to grow rapidly, prevents them from making new cells and eventually encourages them to die.

Dr. Theodoros Tsakiridis, study author and a radiation oncologist at the Juravinski Cancer Center and McMaster University, said, “Our study shows that the diabetes drug metformin can stop lung cancer cells from growing and makes them more sensitive to treatment by radiotherapy. “We’re now working with other institutions to develop a clinical trial that will investigate metformin in lung cancer patients treated with radiotherapy. If we can prove that this works in patients then we could have a potentially powerful weapon in the fight against the disease.”

In spite radiotherapy being an effective treatment for many cancers, it has a limited effect for lung cancer patients. Dr. Kat Arney, science information manager at Cancer Research UK (London, UK), said, “Lung cancer remains one of the most difficult cancers to treat, with less than 10% of people surviving the disease for at least five years. We urgently need new and better ways of treating lung cancer and this research takes us a step towards making radiotherapy a more potent treatment. To improve the chances for lung cancer patients, Cancer Research UK is planning to increase significantly its investment in research into this form of the disease, so that patients can benefit from new and improved treatments sooner.”

Related Links:

McMaster University



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.