Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Antidiabetes Drug Makes Lung Cancer Susceptible to Radiotherapy

By BiotechDaily International staff writers
Posted on 28 May 2013
Metformin, an anitdiabetic drug, has been shown to slow the growth of lung cancer cells and makes them more likely to be killed by radiotherapy.

Scientists from McMaster University (Hamilton, ON, Canada) discovered that metformin acted on the defense mechanisms non-small-cell lung tumors—the most typical form of the disease—use to resist radiotherapy. They published their findings April 30, 2013, in the British Journal of Cancer.

Lung cancer cells typically adapt to radiotherapy by activating survival processes that make them resistant to the treatment and even helps them to grow faster. However, by examining lung cancer cells grown in the lab and in mice, the researchers showed that metformin reverses this effect, once again making them sensitive to radiotherapy. Significantly, the researchers utilized “real life” levels of the drug in their experiments, similar to those already used for treating diabetes.

Metformin seems to work by enhancing the damage-detection signals sent within cancer cells in response to radiotherapy, over-riding the cells’ survival mechanisms. These signals blocks cancer cells from producing the new proteins they need to grow rapidly, prevents them from making new cells and eventually encourages them to die.

Dr. Theodoros Tsakiridis, study author and a radiation oncologist at the Juravinski Cancer Center and McMaster University, said, “Our study shows that the diabetes drug metformin can stop lung cancer cells from growing and makes them more sensitive to treatment by radiotherapy. “We’re now working with other institutions to develop a clinical trial that will investigate metformin in lung cancer patients treated with radiotherapy. If we can prove that this works in patients then we could have a potentially powerful weapon in the fight against the disease.”

In spite radiotherapy being an effective treatment for many cancers, it has a limited effect for lung cancer patients. Dr. Kat Arney, science information manager at Cancer Research UK (London, UK), said, “Lung cancer remains one of the most difficult cancers to treat, with less than 10% of people surviving the disease for at least five years. We urgently need new and better ways of treating lung cancer and this research takes us a step towards making radiotherapy a more potent treatment. To improve the chances for lung cancer patients, Cancer Research UK is planning to increase significantly its investment in research into this form of the disease, so that patients can benefit from new and improved treatments sooner.”

Related Links:

McMaster University



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.