Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Dentritic Cell Treatment Developed for Inoperable Solid Tumors

By BiotechDaily International staff writers
Posted on 10 Oct 2012
New technology offers a potential new treatment alternative for the wide range of clinical circumstances in which patients’ tumors are considered “inoperable” because the patient has multiple tumors, their tumor cannot be completely removed, or the surgery would cause excess damage to the patient and hinder their quality of life.

Northwest Biotherapeutics (NW Bio; Bethesda, MD, USA), a biotechnology company that develops customized immune therapies for cancer, reported that it is in late stage discussions with medical centers in the United States and Europe to continue with a phase I/II clinical trial with the company’s agent, DCVax-Direct, for all types of solid tumor cancers (i.e., cancers in any tissues). The company previously received US Food and Drug Administration (FDA) approval of the clinical trial.

A large number of patients with a variety of cancer types (including lung, colon, pancreatic, liver, ovarian, head and neck, and others) are faced with this situation, because their tumors are already locally advanced or have begun to metastasize by the time symptoms develop and the patients seek treatment. For these patients, the outlook today is bleak and survival remains quite limited.

DCVax-Direct is administered by direct injection into a patient’s tumors. It can be injected into any number of tumors, enabling patients with locally advanced disease or with metastases to be treated. The agent can also be injected into tumors in virtually any location in the body: not only tissues at or near the surface of the body but also, with ultrasound guidance, into interior tissues.

The phase I/II trial with the compound will treat 36 patients in two parts. In part 1, 24 patients with any type of solid tumor cancer will be treated in groups with increasing dose levels. Then, in part 2, an additional 12 patients with any selected cancer will be treated with the optimal dose. When DCVax-Direct was administered in preclinical animal studies, existing tumors regressed. Importantly, the tumors that regressed included not only tumors that were injected with the compound but also tumors on the opposite side of the animal’s body that were not injected, indicating a systemic immune response. Moreover, when the animals were then challenged (injected) with cancer cells, the animals did not re-develop cancer, indicating immune memory. Significantly, the company’s proprietary activation step for the dendritic cells appeared to be crucial for these findings.

“This broad phase I/II trial, allowing DCVax-Direct to be used for all solid tumor cancers, is a very significant development for us and will enable us to make faster and more efficient clinical progress for multiple cancers than would usually be the case,” commented Linda Powers, CEO of NW Bio. “Based upon the preclinical studies showing regression of existing tumors, DCVax-Direct may offer a much needed new treatment option for patients suffering with inoperable tumors today.”

DCVax-Direct is based upon the same platform technology as the company’s first two major product lines (DCVax-L and DCVax-Prostate). This technology utilizes the patient’s own dendritic cells--the master cells of the immune system. Each product line involves two major elements: the dendritic cells (which are activated to activate the immune system to fight the patient’s cancer), and biomarkers of the patient’s tumor (which identify the targets for the immune system to attack).

For DCVax-Direct, the dendritic cells are activated in a special proprietary approach, to enable them to be directly injected into the patient’s tumors, and to capture the biomarkers of the tumors onsite in the tumor. The “educated” dendritic cells then go on to mobilize the immune system to attack any tumors bearing those biomarkers.

Related Links:

Northwest Biotherapeutics



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.