Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Liver X Receptor Identified as Therapeutic Target for Treatment of Parkinson's Disease

By BiotechDaily International staff writers
Posted on 06 Sep 2012
Neurologists seeking means to prevent or treat Parkinson's disease have found that a protein receptor expressed on the microglial cells that surround dopamine-producing neurons plays a critical role in preventing the development of the disease.

The receptor protein studied by investigators at the University of Houston (TX, USA) is liver X receptor beta (LXRbeta). The liver X receptors (nuclear receptor subfamily 1, group H, member 2), LXRalpha and LXRbeta, form a subfamily of the nuclear receptor superfamily and are key regulators of macrophage function, controlling transcriptional programs involved in lipid homeostasis and inflammation. The inducible LXRalpha is highly expressed in liver, adrenal gland, intestine, adipose tissue, macrophages, lung, and kidney, whereas LXRbeta is ubiquitously expressed.

To determine the function of LXRbeta in brain tissues the investigators genetically engineered a line of mice lacking the gene for synthesis of this receptor. These modified mice and a matching group of normal, wild type mice were then exposed to the drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is a neurotoxin that damages the brain in ways that closely mimic Parkinson's disease.

Results published in the July 23, 2012, online edition of the journal Proceedings of the National Academy of Sciences of the USA (PNAS) revealed that the dopamine-producing neurons of the substantia nigra of the genetically engineered mice were much more severely affected by MPTP than were those of the wild type controls. In addition, the number of activated microglia and astrocytes was higher in the substantia nigra of the modified mice than in the controls. Administration of the LXR-activating drug GW3965 to MPTP-treated control mice protected against loss of dopamine-producing neurons and fibers projecting to the striatum, and resulted in fewer activated microglia and astroglia.

"LXRbeta performs an important function in the development of the central nervous system, and our work indicates that the presence of LXRbeta promotes the survival of dopaminergic neurons, which are the main source of dopamine in the central nervous system," said senior author Dr. Jan-Ake Gustafsson, professor of biosciences and nutrition at the University of Houston. "The receptor continues to show promise as a potential therapeutic target for this disease, as well as other neurological disorders."

"LXRbeta is not expressed in the dopamine-producing neurons, but instead in the microglia surrounding the neurons," said Dr. Gustafsson. "Microglia are the police of the brain, keeping things in order. In Parkinson's disease the microglia are overactive and begin to destroy the healthy neurons in the neighborhood of those neurons damaged by MPTP. LXRbeta calms down the microglia and prevents collateral damage. Thus, we have discovered a novel therapeutic target for treatment of Parkinson's disease."

Related Links:
University of Houston


comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.