Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Liver X Receptor Identified as Therapeutic Target for Treatment of Parkinson's Disease

By BiotechDaily International staff writers
Posted on 06 Sep 2012
Neurologists seeking means to prevent or treat Parkinson's disease have found that a protein receptor expressed on the microglial cells that surround dopamine-producing neurons plays a critical role in preventing the development of the disease.

The receptor protein studied by investigators at the University of Houston (TX, USA) is liver X receptor beta (LXRbeta). The liver X receptors (nuclear receptor subfamily 1, group H, member 2), LXRalpha and LXRbeta, form a subfamily of the nuclear receptor superfamily and are key regulators of macrophage function, controlling transcriptional programs involved in lipid homeostasis and inflammation. The inducible LXRalpha is highly expressed in liver, adrenal gland, intestine, adipose tissue, macrophages, lung, and kidney, whereas LXRbeta is ubiquitously expressed.

To determine the function of LXRbeta in brain tissues the investigators genetically engineered a line of mice lacking the gene for synthesis of this receptor. These modified mice and a matching group of normal, wild type mice were then exposed to the drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is a neurotoxin that damages the brain in ways that closely mimic Parkinson's disease.

Results published in the July 23, 2012, online edition of the journal Proceedings of the National Academy of Sciences of the USA (PNAS) revealed that the dopamine-producing neurons of the substantia nigra of the genetically engineered mice were much more severely affected by MPTP than were those of the wild type controls. In addition, the number of activated microglia and astrocytes was higher in the substantia nigra of the modified mice than in the controls. Administration of the LXR-activating drug GW3965 to MPTP-treated control mice protected against loss of dopamine-producing neurons and fibers projecting to the striatum, and resulted in fewer activated microglia and astroglia.

"LXRbeta performs an important function in the development of the central nervous system, and our work indicates that the presence of LXRbeta promotes the survival of dopaminergic neurons, which are the main source of dopamine in the central nervous system," said senior author Dr. Jan-Ake Gustafsson, professor of biosciences and nutrition at the University of Houston. "The receptor continues to show promise as a potential therapeutic target for this disease, as well as other neurological disorders."

"LXRbeta is not expressed in the dopamine-producing neurons, but instead in the microglia surrounding the neurons," said Dr. Gustafsson. "Microglia are the police of the brain, keeping things in order. In Parkinson's disease the microglia are overactive and begin to destroy the healthy neurons in the neighborhood of those neurons damaged by MPTP. LXRbeta calms down the microglia and prevents collateral damage. Thus, we have discovered a novel therapeutic target for treatment of Parkinson's disease."

Related Links:
University of Houston


WATERS CORPORATION

Channels

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.