Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New Technique May Lead to Rejection-Free Adult Stem Cells

By BiotechDaily International staff writers
Posted on 14 Aug 2012
Patient-specific, blood-producing stem cells could soon be generated in the laboratory, eliminating the need for harvesting bone marrow--or finding a matching donor--for patients needing a bone marrow transplant. German scientists have generated blood-forming stem cells from pluripotent stem cells in the laboratory without using animal serum, a technique that could lead to the production of rejection-free adult stem cells.

Researchers Dr. Bernhard Schiedlmeier and Hannes Klump led the study, which was published August 6, 2012, in the journal STEM CELLS Translational Medicine.

The scientists used mouse embryonic stem cells to grow blood-forming stem cells in low-oxygen conditions in the lab without using any serum or supportive cells known as stroma. When they transplanted the blood-forming cells into mice, they found the cells were capable of rebuilding the mice’s blood-forming system.

This findings means that scientists may ultimately be able to create blood stem cells from transplant patients in a laboratory instead of than using stem cells from unrelated donors, avoiding hazardous graft versus host reactions. “If our protocol can be adapted to humans and combined with induced pluripotent stem cell technology, it will open the door to producing adult stem cells that a patient’s body should not reject,” Dr. Klump said.

“These researchers have made progress toward the idea of one day using a patient’s own skin cells, or other cell types, to make blood-producing cells in the laboratory,” said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine (Winston-Salem, NC, USA). “These findings are important for the translational aspects of using iPS cells.”

Dr. Schiedlmeier works in the department of experimental biology at Hannover Medical School (Germany) and Dr. Klump works at the Institute for Transfusion Medicine at University Hospital Essen (Germany).

Related Links:

Hannover Medical School
University Hospital Essen




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.