Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

New Technique May Lead to Rejection-Free Adult Stem Cells

By BiotechDaily International staff writers
Posted on 14 Aug 2012
Patient-specific, blood-producing stem cells could soon be generated in the laboratory, eliminating the need for harvesting bone marrow--or finding a matching donor--for patients needing a bone marrow transplant. German scientists have generated blood-forming stem cells from pluripotent stem cells in the laboratory without using animal serum, a technique that could lead to the production of rejection-free adult stem cells.

Researchers Dr. Bernhard Schiedlmeier and Hannes Klump led the study, which was published August 6, 2012, in the journal STEM CELLS Translational Medicine.

The scientists used mouse embryonic stem cells to grow blood-forming stem cells in low-oxygen conditions in the lab without using any serum or supportive cells known as stroma. When they transplanted the blood-forming cells into mice, they found the cells were capable of rebuilding the mice’s blood-forming system.

This findings means that scientists may ultimately be able to create blood stem cells from transplant patients in a laboratory instead of than using stem cells from unrelated donors, avoiding hazardous graft versus host reactions. “If our protocol can be adapted to humans and combined with induced pluripotent stem cell technology, it will open the door to producing adult stem cells that a patient’s body should not reject,” Dr. Klump said.

“These researchers have made progress toward the idea of one day using a patient’s own skin cells, or other cell types, to make blood-producing cells in the laboratory,” said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine (Winston-Salem, NC, USA). “These findings are important for the translational aspects of using iPS cells.”

Dr. Schiedlmeier works in the department of experimental biology at Hannover Medical School (Germany) and Dr. Klump works at the Institute for Transfusion Medicine at University Hospital Essen (Germany).

Related Links:

Hannover Medical School
University Hospital Essen




Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.