We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

By LabMedica International staff writers
Posted on 15 Apr 2024
Print article
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells. However, traditional cell separation techniques, which typically focus on isolating single tumor cells, are inadequate for simultaneously purifying tumor cell clusters. In response, researchers have developed a microfluidic method capable of high-throughput, continuous-flow ternary separation of single tumor cells, tumor cell clusters, and white blood cells (WBCs) from clinical samples of pleural or abdominal effusions. This technique incorporates slanted spiral channels and periodic contraction-expansion arrays to achieve separation.

The novel spiral-contraction-expansion device developed by researchers from Southeast University (Nanjing, China) utilizes slanted spiral channels combined with periodic contraction-expansion arrays for high-throughput, continuous-flow ternary separation of tumor cells and tumor cell clusters from a background of blood cells. By introducing periodic contraction-expansion arrays, the spiral-contraction-expansion device allows for the size-based ternary separation of cells under the combined action of the inertial lift force, Dean drag force, and local vortex-induced lift force. The researchers first characterized the ternary inertial focusing of differently sized particles in their spiral-contraction-expansion device and optimized the operational flow rate.

Subsequent evaluation was conducted of the device’s separation performance, recovery ratio, and purity of the tumor cells and clusters. The researchers also examined the device’s ability to carry out ternary separation of exfoliated tumor cells, tumor cell clusters, and WBCs from clinical pleural or abdominal effusions derived from cancer patients. The spiral-contraction-expansion device provides numerous benefits, including label-free, continuous-flow, high-throughput separation of tumor cells and clusters from cancer patient effusions in a single step. This method offers significant potential for enhancing the diagnosis and monitoring of treatment in cancer patients by analyzing malignant effusions with higher precision and efficiency.

Related Links:
Southeast University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The new blood test identifies key biomarkers of osteoarthritis (Photo courtesy of Shutterstock)

Blood Test Predicts Knee Osteoarthritis Eight Years Before Signs Appears On X-Rays

Osteoarthritis (OA) is the most prevalent form of arthritis, impacting millions worldwide and resulting in significant economic and social costs. Although no cure exists currently, the effectiveness of... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.