We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Laser-Based Tool Injects Nanoparticles and Macromolecules into Cells with Minimal Damage

By LabMedica International staff writers
Posted on 29 Apr 2015
Print article
Image: BLAST drives nanoparticles, enzymes, antibodies, and bacteria into cells at the rate of 100,000 cells per minute—significantly faster than current technology (Photo courtesy of UCLA - University of California, Los Angeles).
Image: BLAST drives nanoparticles, enzymes, antibodies, and bacteria into cells at the rate of 100,000 cells per minute—significantly faster than current technology (Photo courtesy of UCLA - University of California, Los Angeles).
Cell biologists have developed a laser-based tool that is capable of injecting large objects such as nanoparticles, bacteria, or macromolecules into cells at a speed much greater than allowed by current technologies.

Investigators at the University of California, Los Angeles (USA) call the new tool "biophotonic laser-assisted surgery tool (BLAST)." BLAST is, in essence, a silicon chip with an array of micrometer-wide holes, each surrounded by an asymmetric, semicircular coating of titanium.

A reservoir of liquid that includes the particles to be delivered is located beneath the holes. Target cells are loaded onto the silicon chip, and a laser pulse is used to heat the titanium coating, which instantly boils the water layer adjacent to parts of the cell. This generates an array of microcavitation bubbles that form pores in adjacent cell membranes through which cargo is gently driven by pressurized flow.

The investigators reported in the April 6, 2015, online edition of the journal Nature Methods that the platform delivered large items including bacteria, enzymes, antibodies, and nanoparticles into diverse cell types with high efficiency—up to 100,000 cells per minute—and cell viability.

“The new information learned from these types of studies could assist in identifying pathogen targets for drug development, or provide fundamental insight on how the pathogen–host interaction enables a productive infection or effective cellular response to occur,” said contributing author Dr. Michael Teitell, professor of pediatric and developmental pathology at the University of California, Los Angeles.

Related Links:

University of California, Los Angeles


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.