We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




X-Ray Powder Diffraction Technology Developed for Molecule Identification

By LabMedica International staff writers
Posted on 05 Aug 2014
Print article
Image: A new method makes it possible to establish very rapidly what substances—proteins and others—a product in powder form contains. For example, a quick analysis of a washing powder developed for the Danish market revealed a high level of zeolite material, which is used to bind limestone from the hard water that is so prevalent in Denmark, while a sample from Morocco contained none of this material. Analysis of another washing powder revealed that “active oxygen is simply the compound sodium percarbonate, i.e., bonded hydrogen peroxide (Photo courtesy of Iben Julie Schmidt).
Image: A new method makes it possible to establish very rapidly what substances—proteins and others—a product in powder form contains. For example, a quick analysis of a washing powder developed for the Danish market revealed a high level of zeolite material, which is used to bind limestone from the hard water that is so prevalent in Denmark, while a sample from Morocco contained none of this material. Analysis of another washing powder revealed that “active oxygen is simply the compound sodium percarbonate, i.e., bonded hydrogen peroxide (Photo courtesy of Iben Julie Schmidt).
A Danish researcher has developed a technique that uses X-rays for the rapid identification of substances present in an indeterminate powder. The new technique has the capacity to recognize sophisticated biologic molecules such as proteins. The method therefore has enormous potential in food production and the pharmaceutical industry, where it opens up, for example, new opportunities for the quality assurance (QA) of protein-based drugs. The technique was developed by a Technical University of Denmark (DTU; Kongens Lyngby) researcher.

It is rarely sufficient to read the content information if one needs to know exactly what substances a product contains. One needs to be a very skilled chemist or to have “X-ray vision” to look directly into the molecular structure of the various substances. Christian Grundahl Frankaer, a postdoc in the DTU department of chemical engineering, is almost both, as he has developed technology that allows him to use X-rays to look deep into biologic samples.

The technique is called powder diffraction and involves subjecting a sample to an intense beam of X-rays. When the beam hits the sample, it disseminates in the same manner as light does when reflected by a disco ball. This generates a pattern that reflects the structure of the substance. Each individual substance has its own unique pattern, which makes it easily identifiable when the findings are run through a database.

Powder diffraction is currently used to identify basic substances such as salts, sugars, and minerals, but the theory behind using the same technique to characterize complicated biologic molecules such as proteins is groundbreaking. It is for this reason that the technology has huge possibilities in both food production and the pharmaceutical industry, where more and more attention is being dedicated to protein-based medicines.

“I have tested different types of infant milk formula, protein powders and detergents. By taking a small sample of powder and bombarding it with X-rays, I can determine what substances the powder contains, and in what concentrations, within 10 minutes. In addition, the analysis will typically reveal some information about how the product was made,” noted Dr. Frankaer. The method is therefore perfect for quality assurance of new products on the market.

Dr. Franaer added, “We have now demonstrated that powder diffraction can actually be used on biological substances such as proteins. The results are not as detailed as in single crystal diffraction, which makes it possible to decode the entire structure of the protein, but they do allow us to ‘lift fingerprints’ quickly and easily so that we can identify the protein and its crystal structure. This is valuable knowledge when you are working with the production of proteins.”

The technology has great potential in the framework of optimizing both quality and production processes in all production set-ups that involve solid substances. Applying the new approach will make it possible to check continuously for alterations in—or transformations of—different materials used in the production process. “The advantage of our method is that it allows you to take samples directly from a production line. You then have the results within 15 minutes and can tell precisely what crystalline material is involved. In addition, the X-ray beams we use can easily be generated using standard laboratory equipment,” stated Dr. Frankaer.

The promising findings are just beginning of the project, “What we want to do now is to test how far we can push the method. We have already established that it works on proteins, but will it also work on other complex products? And what happens if we take the samples to the synchrotron in Grenoble [France], where the X-ray beam is a million times more powerful than the one we have in our laboratory?” queried Dr. Frankaer.

Related Links:

Technical University of Denmark


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.