Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words

By BiotechDaily International staff writers
Posted on 30 Jul 2014
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).
New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing the foundation of how to form words long before they actually begin to speak and this may affect the developmental transition.

Infants notice the difference between sounds of all languages until about eight months of age when their brains begin to concentrate only on the sounds they hear around them. It is not known how this transition occurs, but social interactions and caregivers’ use of embellished “parentese” manner of speech appear to help.

The study’s findings were published July 14, 2014, in the Proceedings of the National Academy of Sciences of the United States of America. “Most babies babble by seven months, but don’t utter their first words until after their first birthdays,” said lead author Dr. Patricia Kuhl, who is the co-director of the University of Washington’s (UW; Seattle, USA) Institute for Learning and Brain Sciences. “Finding activation in motor areas of the brain when infants are simply listening is significant, because it means the baby brain is engaged in trying to talk back right from the start and suggests that seven-month-olds’ brains are already trying to figure out how to make the right movements that will produce words.”

Dr. Kuhl and her research colleagues think this practice at motor planning contributes to the transition when babies become more sensitive to their native language. These findings stress the importance of talking to kids during social interactions even if they are not talking back yet. “Hearing us talk exercises the action areas of infants’ brains, going beyond what we thought happens when we talk to them,” Dr. Kuhl said. “Infants’ brains are preparing them to act on the world by practicing how to speak before they actually say a word.”

In the research, infants sat in a brain scanner that measures brain activation through a noninvasive technique called magnetoencephalography (MEG). The brain scanner resembles an egg-shaped old-fashioned hair dryer and is completely safe for infants. The Institute for Learning and Brain Sciences was the first in the world to use such a tool to study babies while they engaged in a task.

Each of the infants, 57 7- and 11- or 12-month-olds, listened to a series of native and foreign language syllables such as “da” and “ta” as researchers recorded brain responses. They listened to sounds in English and in Spanish. The researchers examined brain activity in an auditory area of the brain called the superior temporal gyrus, as well as in Broca’s area and the cerebellum, cortical regions responsible for planning the motor movements required for producing speech.

This pattern of brain activation occurred for sounds in the seven-month-olds’ native language (English) as well as in a non-native language (Spanish), showing that at this early age infants are responding to all speech sounds, whether or not they have heard the sounds before.

In the older infants, brain activation was different. By 11-12 months, babies’ brains increase motor activation to the non-native speech sounds comparative to their native speech, which the researchers interpret as showing that it takes more effort for the baby brain to forecast which movements create non-native speech. This reflects an effect of experience between 7 and 11 months, and suggests that activation in motor brain areas is contributing to the transition in early speech perception.

The study has social implications, suggesting that the slow and exaggerated-style of parentese speech-- “Hiiiii! How are youuuuu?”--may actually prompt infants to try to synthesize utterances themselves and imitate what they heard, uttering something like “Ahhh bah bah baaah.”

“Parentese is very exaggerated, and when infants hear it, their brains may find it easier to model the motor movements necessary to speak,” Dr. Kuhl said.

Related Links:

University of Washington



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.