Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Scientists Achieve Rapid Whole-Brain Imaging with Single Cell Resolution

By BiotechDaily International staff writers
Posted on 15 Jun 2014
Image: Marmoset brain created using the CUBIC method (Photo courtesy of RIKEN).
Image: Marmoset brain created using the CUBIC method (Photo courtesy of RIKEN).
An intensive effort has been made, particularly in the brain, to determine how neural activity is converted into consciousness and other complicated brain activities. A new high-throughput technology called CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) appears to be a giant leap forward, as it offers unprecedented rapid whole-brain imaging at single cell resolution with a straightforward protocol to clear and make the brain sample transparent based on the use of amino-alcohols.

A key problem of systems biology is determining how phenomena at the cellular scale correlate with activity at the organism level. One example of the technologies that may provide better understanding of these phenomena is whole-brain imaging at single-cell resolution. This imaging typically involves preparing a highly transparent sample that minimizes light scattering and then imaging neurons tagged with fluorescent probes at different slices to generate a three-dimensional (3D) representation. However, limitations in current techniques prevent comprehensive study of the relationship. The project’s findings were published April 24, 2014, in the journal Cell.

In combination with light sheet fluorescence microscopy, CUBIC was evaluated for rapid imaging of a number of mammalian systems, such as mouse and primate, demonstrating its scalability for brains of different size. Moreover, it was used to acquire new spatial-temporal details of gene expression patterns in the hypothalamic circadian rhythm center. Moreover, by combining images captured from opposite directions, CUBIC enables whole brain imaging and direct comparison of brains in diverse environmental settings.

CUBIC tackles a number of obstacles compared with earlier strategies. One is the clearing and transparency protocol, which involves serially immersing fixed tissues into just two reagents for a comparatively short time. Second, CUBIC is compatible with many fluorescent probes because of low quenching, which allows for probes with longer wavelengths and lessens concern for scattering when whole brain imaging, while at the same time provides multicolor imaging. Lastly, it is highly reproducible and scalable. Whereas other approaches have achieved some of these abilities, CUBIC is the first to accomplish it all.

CUBIC provides data on earlier unattainable 3D gene expression profiles and neural networks at the systems level. Because of its rapid and high-throughput imaging, CUBIC offers an amazing opportunity to study localized effects of genomic editing. It also is expected to identify neural connections at the whole brain level. Last author Dr. Hiroki Ueda, from RIKEN (Saitama, Japan) is excited about further applications to even larger mammalian systems. “In the near future, we would like to apply CUBIC technology to whole-body imaging at single cell resolution.”

Related Links:

RIKEN



comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.