Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
BioConferenceLive

Scientists Achieve Rapid Whole-Brain Imaging with Single Cell Resolution

By BiotechDaily International staff writers
Posted on 15 Jun 2014
Image: Marmoset brain created using the CUBIC method (Photo courtesy of RIKEN).
Image: Marmoset brain created using the CUBIC method (Photo courtesy of RIKEN).
An intensive effort has been made, particularly in the brain, to determine how neural activity is converted into consciousness and other complicated brain activities. A new high-throughput technology called CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) appears to be a giant leap forward, as it offers unprecedented rapid whole-brain imaging at single cell resolution with a straightforward protocol to clear and make the brain sample transparent based on the use of amino-alcohols.

A key problem of systems biology is determining how phenomena at the cellular scale correlate with activity at the organism level. One example of the technologies that may provide better understanding of these phenomena is whole-brain imaging at single-cell resolution. This imaging typically involves preparing a highly transparent sample that minimizes light scattering and then imaging neurons tagged with fluorescent probes at different slices to generate a three-dimensional (3D) representation. However, limitations in current techniques prevent comprehensive study of the relationship. The project’s findings were published April 24, 2014, in the journal Cell.

In combination with light sheet fluorescence microscopy, CUBIC was evaluated for rapid imaging of a number of mammalian systems, such as mouse and primate, demonstrating its scalability for brains of different size. Moreover, it was used to acquire new spatial-temporal details of gene expression patterns in the hypothalamic circadian rhythm center. Moreover, by combining images captured from opposite directions, CUBIC enables whole brain imaging and direct comparison of brains in diverse environmental settings.

CUBIC tackles a number of obstacles compared with earlier strategies. One is the clearing and transparency protocol, which involves serially immersing fixed tissues into just two reagents for a comparatively short time. Second, CUBIC is compatible with many fluorescent probes because of low quenching, which allows for probes with longer wavelengths and lessens concern for scattering when whole brain imaging, while at the same time provides multicolor imaging. Lastly, it is highly reproducible and scalable. Whereas other approaches have achieved some of these abilities, CUBIC is the first to accomplish it all.

CUBIC provides data on earlier unattainable 3D gene expression profiles and neural networks at the systems level. Because of its rapid and high-throughput imaging, CUBIC offers an amazing opportunity to study localized effects of genomic editing. It also is expected to identify neural connections at the whole brain level. Last author Dr. Hiroki Ueda, from RIKEN (Saitama, Japan) is excited about further applications to even larger mammalian systems. “In the near future, we would like to apply CUBIC technology to whole-body imaging at single cell resolution.”

Related Links:

RIKEN



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

Molecular Pathway Decreases Cell Adhesion and Initiates Metastasis

A recent paper outlined a molecular pathway that enables lung cancer cells to migrate away from the site of the primary tumor and become established in other parts of the body. Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) linked a virtual alphabet soup of genes and their protein products... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.