Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Project to Move Engineered Tissue and Organs from Lab to the Bedside, Operating Room

By BiotechDaily International staff writers
Posted on 13 May 2014
Image: Lab-grown vaginal organs implanted in patients (Photo courtesy of the Wake Forest Institute for Regenerative Medicine).
Image: Lab-grown vaginal organs implanted in patients (Photo courtesy of the Wake Forest Institute for Regenerative Medicine).
As developments in lab-created organs and tissues continue to advance, the challenge becomes how to translate the technology from the laboratory to the operating room. Two US universities are now exploring manufacturing platforms to mass produce customized engineered tissues and organs.

Developing a way to scale up personalized lab-created organs and tissues would benefit patients around the world who must wait for donated organs to receive transplants. North Carolina (NC) State University’s (Raleigh, NC, USA) industrial and systems engineering department (NC State ISE) engineers are partnering with biomedical scientists at the Wake Forest Institute for Regenerative Medicine (WFIRM; Winston-Salem, NC, USA). Together, the institutions are creating advancements in 3D technology, computer-aided modeling and intelligent automation to print tissues and organs for patients. With their focus on precision, computer modeling and three-dimensional (3D) printing will help scientists scale up the tissue engineering processes currently being done manually.

The future of organs-on-demand requires the mass generation of precise parts that are specific to each individual recipient. The development entails combining the cells and a scaffold, or a model that forms the essential shape. The support structure is designed to gradually dissolve after implantation in the body. At the same time, the scaffolding material is being absorbed by the body, and the cells lay down materials to form a permanent support structure, progressively replacing the engineered scaffold with a new organ.

Leading corporate and education specialists in medicine, engineering, and science gathered at this year’s Regenerative Medicine Foundation Conference, May 5-7, 2014, held in San Francisco, CA, USA, to share firsthand accounts of their visions and challenges of bio-tissue manufacturing. Dr. Binil Starly, director of NC State ISE’s laboratory for engineering biological tissue systems, uses bioprinting to devise ways for mass producing engineered tissue and also shared data about these latest developments, including a patent-pending process, which is collaboration between WFIRM and NCSU, for providing replacement skin for burn victims.

“It is one thing to be able to grow an organ but another to take that ability to the bedside, so involving manufacturing engineers early on in the biological research phase is vital to achieving commercialization,” said Dr. Starly. “NC State ISE reviews the scientific process for growing tissue cells, and then applies 3D technologies and algorithms to automate it, so a very sensitive biological process can be replicated safely and effectively.”

Dr. Anthony Atala, director of WFIRM and NC State ISE advisory board member, moderated a panel on the marketing of regenerative medicine therapies at the conference. WFIRM scientists have developed lab-grown organs, such as bladders, vaginal organs, and urine tubes successfully used in patients.

Related Links:

North Carolina State University
Wake Forest Institute for Regenerative Medicine 



WATERS CORPORATION

Channels

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.