Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Project to Move Engineered Tissue and Organs from Lab to the Bedside, Operating Room

By BiotechDaily International staff writers
Posted on 13 May 2014
Image: Lab-grown vaginal organs implanted in patients (Photo courtesy of the Wake Forest Institute for Regenerative Medicine).
Image: Lab-grown vaginal organs implanted in patients (Photo courtesy of the Wake Forest Institute for Regenerative Medicine).
As developments in lab-created organs and tissues continue to advance, the challenge becomes how to translate the technology from the laboratory to the operating room. Two US universities are now exploring manufacturing platforms to mass produce customized engineered tissues and organs.

Developing a way to scale up personalized lab-created organs and tissues would benefit patients around the world who must wait for donated organs to receive transplants. North Carolina (NC) State University’s (Raleigh, NC, USA) industrial and systems engineering department (NC State ISE) engineers are partnering with biomedical scientists at the Wake Forest Institute for Regenerative Medicine (WFIRM; Winston-Salem, NC, USA). Together, the institutions are creating advancements in 3D technology, computer-aided modeling and intelligent automation to print tissues and organs for patients. With their focus on precision, computer modeling and three-dimensional (3D) printing will help scientists scale up the tissue engineering processes currently being done manually.

The future of organs-on-demand requires the mass generation of precise parts that are specific to each individual recipient. The development entails combining the cells and a scaffold, or a model that forms the essential shape. The support structure is designed to gradually dissolve after implantation in the body. At the same time, the scaffolding material is being absorbed by the body, and the cells lay down materials to form a permanent support structure, progressively replacing the engineered scaffold with a new organ.

Leading corporate and education specialists in medicine, engineering, and science gathered at this year’s Regenerative Medicine Foundation Conference, May 5-7, 2014, held in San Francisco, CA, USA, to share firsthand accounts of their visions and challenges of bio-tissue manufacturing. Dr. Binil Starly, director of NC State ISE’s laboratory for engineering biological tissue systems, uses bioprinting to devise ways for mass producing engineered tissue and also shared data about these latest developments, including a patent-pending process, which is collaboration between WFIRM and NCSU, for providing replacement skin for burn victims.

“It is one thing to be able to grow an organ but another to take that ability to the bedside, so involving manufacturing engineers early on in the biological research phase is vital to achieving commercialization,” said Dr. Starly. “NC State ISE reviews the scientific process for growing tissue cells, and then applies 3D technologies and algorithms to automate it, so a very sensitive biological process can be replicated safely and effectively.”

Dr. Anthony Atala, director of WFIRM and NC State ISE advisory board member, moderated a panel on the marketing of regenerative medicine therapies at the conference. WFIRM scientists have developed lab-grown organs, such as bladders, vaginal organs, and urine tubes successfully used in patients.

Related Links:

North Carolina State University
Wake Forest Institute for Regenerative Medicine 



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Drug Discovery

view channel

Curcumin Used to Treat Alzheimer’s Disease

Curcumin, a natural substance found in the spice turmeric, has been used by many Asian cultures for centuries. Now, new research suggests that a close chemical analog of curcumin has properties that may make it useful as a treatment for Alzheimer’s disease. “Curcumin has demonstrated ability to enter the brain, bind... Read more

Biochemistry

view channel
Image: Induced pluripotent stem (iPS) cells, which act very much like embryonic stem cells, are shown growing into heart cells (blue) and nerve cells (green) (Photo courtesy of Gladstone Institutes/Chris Goodfellow).

Methodology Devised to Improve Stem Cell Reprogramming

In a study that provides scientists with a critical new determination of stem cell development and its role in disease, researchers have established a first-of-its-kind approach that outlines the stages... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.