Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Switch to CAD Technology Greatly Improves Lab-On-A-Chip Capability

By BiotechDaily International staff writers
Posted on 12 May 2014
Print article
The lab-on-a-chip holds potential for reducing cost of medical diagnostics while expanding access to health care. Now scientists have developed computer aided design (CAD) software to enable far more than one or two tests on a single chip.

In the near future healthcare professionals may be able to routinely run clinical lab tests almost instantly on a digital microfluidic machine about the size of credit card. These lab-on-a-chips (LOCs) would not only be quick—results available in minutes—but also inexpensive and portable. They could be used at point-of-care, and even at long distance from the nearest medical clinic.

But as powerful as they may be, they could be far better, said Shiyan Hu, associate professor of electrical and computer engineering at Michigan Technological University (MTU; Houghton, MI, USA). Current LOCs can generally run no more than a test or two because the chips are designed manually. If the LOCs were made using computer-aided design (CAD), you could run dozens of tests with, for example, a single drop of blood. “In a very short time, you could test for many conditions,” said Prof. Hu; “This really would be an entire lab on a chip.” With PhD student Chen Liao, Prof. Hu has taken the first step. “We have developed software to design the hardware,” he said.

Their work, described in, and featured on the cover of, the March, 2014, edition of the journal IEEE Transactions on Nanobiosciences, focuses on routing a droplet of blood or other fluid through each test on the chip efficiently while avoiding contamination. A key part in LOC CAD is physical-level synthesis. It includes the LOC placement and routing, where placement is to determine the physical location and the starting time of each operation, and routing is to transport each droplet from the source to the destination.

“It has taken us four years to do the software, but to manufacture the LOC would be inexpensive,” said Prof. Hu; “The materials are very cheap, and the results are more accurate than a conventional lab’s.” Prof. Hu plans to fabricate their own biochip using their software.

Related Links:

Michigan Technological University



Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.