Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

Simulation Gives Clues About Forces Underlying Fundamental Cellular Processes

By BiotechDaily International staff writers
Posted on 28 Apr 2014
Image: Cell-like features in computer simulated active droplets: Left – static distortion; Middle – motility; Right: division (Photo courtesy of Dr. Luca Giomi and Dr. Antonio DeSimone, SISSA).
Image: Cell-like features in computer simulated active droplets: Left – static distortion; Middle – motility; Right: division (Photo courtesy of Dr. Luca Giomi and Dr. Antonio DeSimone, SISSA).
Researchers have developed a simulation model resulting in clues to physical conditions that help drive cell division and motility. The results may also hint at conditions that helped facilitate the original transition from inanimate to living matter.

Active droplets of filamentous material enclosed in a lipid membrane are the main cell-like characteristics modeled in a program, developed by physicists Luca Giomi and Antonio DeSimone of the International School for Advanced Studies (SISSA; Scuola Internazionale Superiore di Studi Avanzati; Trieste, Italy), for numerical simulations to investigate the mechanics of “simplified” pre-cell structures. The simulations indicated a spontaneous emergence of features reminiscent of living material—of cell-like motility and division.

The model mimics some of the physical properties of cells: “Our ‘cells’ are a bare bones representation of a biological cell, which normally contains microtubules, elongated proteins, enclosed in an essentially lipid cell membrane," said Dr. Giomi; "The filaments contained in the ‘cytoplasm’ of our cells slide over one another exerting a force that we can control." The force exerted by the filaments is the variable that competes with another force, the surface tension that prevents the membrane surrounding the droplet from collapsing. This "competition" generates a flow in the fluid surrounding the droplet, and the droplet is in turn propelled by this self-generated hydrodynamic flow. When the flow becomes very strong, the droplet deforms to the point of dividing: "When the force of the flow prevails over the force that keeps the membrane together we have ‘cellular’ division," said Dr. DeSimone, director of the SISSA mathLab, SISSA's mathematical modeling and scientific computing laboratory.

"We showed that by acting on a single physical parameter in a very simple model we can reproduce similar effects to those obtained with experimental observations," continued Dr. DeSimone. Empirical observations on microtubule specimens have shown that these also move outside the cell environment, in a manner proportional to the energy they have (derived from ATP). "Similarly, our droplets, fuelled by their ‘inner’ energy alone—without forces acting from the outside—are able to move and even divide," he said.

The study, described in the April 10, 2014, online issue of the journal Physical Review Letters, is a step forward toward creating functional artificial cells and toward a better understanding of the first passages from which life has developed: "Acquiring motility and the ability to divide is a fundamental step for life and, according to our simulations, the laws governing these phenomena could be very simple. Observations like ours can prepare the way for the creation of functioning artificial cells, and not only," said Dr. Giomi. "Our work is also useful for understanding the transition from non-living to living matter on our planet." Chemists and biologists who study the origin of life lack access to cells that are sufficiently simple. "Even the simplest organism existing today has undergone billions of years of evolution, and will always contain fairly complex structures," noted Dr. Giomi.

Related Links:

SISSA, International School for Advanced Studies



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.