Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New Benchtop Devices Provide Automated Sample Decapping, Recapping, and Identification

By BiotechDaily International staff writers
Posted on 20 Apr 2014
Image: New LabElite line of benchtop devices provides automated sample decapping, recapping, and identification (Photo courtesy of Hamilton Storage Technologies).
Image: New LabElite line of benchtop devices provides automated sample decapping, recapping, and identification (Photo courtesy of Hamilton Storage Technologies).
A new line of benchtop devices provides flexible solutions for sample processing, tracking, and security for automated and manual liquid handling workflows.

The LabElite line from Hamilton Storage Technologies (Franklin, MA, USA) offers laboratories an easy and efficient way to automatically process and track samples while ensuring sample integrity. LabElite devices quickly process all common labware types, providing a flexible solution for optimizing workflows. Three models are available to meet a user’s application, throughput, and sample tracking needs.

The all-in-one LabElite I.D. Capper enables labs to combine decapping/recapping and high-speed barcode reading within one device without additional user interaction. The I.D. Capper is specifically designed to reduce sample contamination and assist with sample tracking during end-to-end automated liquid-handling processing. The I.D. Capper includes all the new features and benefits standard to the other LabElite devices.

“This newest innovation from Hamilton provides the market with the first product where the user has the ability to positively identify the tube chosen for decapping/recapping and track it throughout the workflow,” said Peter Hoffmann, project leader, storage technologies, Hamilton Bonaduz AG.

When sample tracking is not required, the next-generation LabElite DeCapper is available for decapping and recapping tubes in 48-cryovial or 96-microtube racks. A new feature can automatically move the racks from portrait to landscape formats for processing. Additionally, an innovative “secure mode” provides sample security by decapping and recapping only one row at a time, minimizing the time a tube is open and eliminating the risk of cross contamination. This feature also enables the rows to be paused for “point-of-use” pipetting between capping and recapping, which is very useful for manual workflows. The DeCapper can process all common tubes, including Matrix, FluidX, Greiner Bio-One, Micronic, Nunc, and Corning, with internal and external thread caps.

For labs with manual workflows that need an efficient, high-speed 2D barcode reader for tube racks, the LabElite I.D. Reader is an ideal choice. This device decodes multiple types of labware including 2D barcoded tubes in all common 12-, 24-, 48-, 96- and 384-tube racks including honeycomb-shaped racks, providing complete sample tracking during processing. In addition, the reader can identify racks that are labeled with a 2D barcode on the bottom. The technology uses high-speed decoding algorithms and parallel processing, which provides the fastest run times currently available. A 96-tube rack runs in less than 3 seconds and a 384-tube rack in less than 5 seconds. Optional 1D barcode reading of the rack label is also available. The I.D. Reader supports all common tubes, including Matrix, FluidX, Greiner Bio-One, Micronic, Nunc, Corning, Matrical, WHEATON, ABgene, and REMP.

The LabElite I.D. Capper, DeCapper and I.D. Reader are for research only, not for use in clinical diagnostic procedures.

Related Links:

Hamilton Storage Technologies
LabElite Line 



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Illustration comparing a normal blood vessel and partially blocked vessel due to atherosclerotic plaque build-up (Photo courtesy of Wikimedia Commons).

Mutation Reducing Fatty Acid-Binding Protein Activity Lowers Heart Attack Risk

A team of Finnish cardiovascular disease researchers found that a mutation generating a low-expression variant of fatty acid-binding protein 4 (FABP4), reduced the risk of heart attack and stroke.... Read more

Drug Discovery

view channel
Image: (Left) Neurons in brains from people with autism do not undergo normal pruning during childhood and adolescence. The images show representative neurons from unaffected brains (left) and brains from autistic patients (right); the spines on the neurons indicate the location of synapses (Photo courtesy of Guomei Tang, PhD and Mark S. Sonders, PhD, Columbia University Medical Center).

Autistic Youngsters Found to Have Too Many Brain Synapses

Autistic children and adolescents have been shown to have an excess of brain synapses, and this is due to a slowdown in the normal brain “trimming” process during development, according to new findings.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.