Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Visualizing Transcriptomes with New Bioinformatics Application

By BiotechDaily International staff writers
Posted on 19 Mar 2014
Image: Overview of the ZENBU genome browser interface showcasing several on-demand processing tracks for selected ENCODE datasets (experiment involving Gm12878, Hela and Nhek cell lines) (Photo courtesy of the RIKEN Center for Life Science Technology).
Image: Overview of the ZENBU genome browser interface showcasing several on-demand processing tracks for selected ENCODE datasets (experiment involving Gm12878, Hela and Nhek cell lines) (Photo courtesy of the RIKEN Center for Life Science Technology).
A new, freely available bioinformatics application enables scientists to rapidly and easily visualize, integrate, and compare large amounts of genomic data resulting from large-scale, next-generation sequencing research.

The new tool, called ZENBU, was developed at the RIKEN Center for Life Science Technology (Kobe, Japan), The new tool will allow researchers to rapidly and easily incorporate, visualize and compare large amounts of genomic information resulting from large-scale, next-generation sequencing experiments.

Next-generation sequencing has revolutionized functional genomics, with protocols such as RNA-seq (RNA sequencing), ChIP-seq (chromatin immunoprecipitation), and CAGE (cap analysis of gene expression) being employed widely worldwide. The efficacy of these techniques lies in the fact that they enable the genome-wide discovery of transcripts and transcription factor-binding sites, which is crucial to better understanding the molecular processing underlying cell function in healthy and diseased individuals and the development of diseases such as cancer. The integration of data from multiple research efforts is an important feature of the interpretation of findings; however, the growing number of datasets generated makes a thorough comparison and analysis of findings unwieldy.

In a report published March 9, 2014, in the journal Nature Biotechnology, Dr. Jessica Severin and colleagues described the development of ZENBU, a tool that combines a genome browser with data analysis and a linked expression view, to facilitate the interactive visualization and comparison of results from large numbers of next-generation sequencing datasets. The key difference between ZENBU and earlier developed tools is the ability to dynamically combine thousands of research datasets in an interactive visualization setting through linked genome location and expression signal views. This allows scientists to compare their own research against the over 6,000 ENCODE and FANTOM consortium datasets currently loaded into the system, thereby enabling them to discover new and noteworthy biologic processes. The tool is designed to incorporate millions of experiments/datasets of any kind (RNA-seq, ChIP-seq or CAGE), hence, its name: zenbu means in Japanese “all” or “everything.”

ZENBU is freely available for use on the web and for installation in individual laboratories, and all ZENBU sites are connected and continuously share data. The tool can be accessed or downloaded online (Please see Related Links below).

“By distributing the data and servers we encourage scientists to load and share their published data to help build a comprehensive resource to further advance research efforts and collaborations around the world,” explained the researchers.

Related Links:

RIKEN Center for Life Science Technology
Zenbu Transcriptomes Dataset Tool



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.