Features Partner Sites Information LinkXpress
Sign In
Demo Company

Novel Filtration System Removes Proteins and Phospholipids from Analytical Samples

By BiotechDaily International staff writers
Posted on 03 Feb 2014
Print article
Image: The ISOLUTE PLD+ protein and phospholipid removal plate (Photo courtesy of Biotage).
Image: The ISOLUTE PLD+ protein and phospholipid removal plate (Photo courtesy of Biotage).
Biotechnology and other life science researchers now have available a novel filter system that removes both proteins and phospholipids, which leaves samples ready for LC-MS/MS (liquid chromatography-mass spectroscopy) analysis.

The Biotage (Uppsala, Sweden) ISOLUTE PLD+ plate combines protein and phospholipid removal from blood-based matrix samples and provides simple and effective cleanup for LC-MS/MS analysis. According to the manufacturer, ISOLUTE PLD+ plates remove more than 99% of plasma proteins and phospholipids, the main causes of ion suppression, leading to cleaner extracts and increased sensitivity, signal-to-noise, for a broad range of analytes.

ISOLUTE PLD+ plates are available in standard 96-well format and can handle sample volumes of 100 to 200 microliters. Operation of the ISOLUTE PLD+ plate includes a filtration step that can be accomplished with a 96-well compatible positive pressure manifold (such as the Biotage Pressure+ 96), a vacuum manifold (for example the Biotage VacMaster 96) and most automated liquid handling systems.

“Requiring next to no method development, ISOLUTE PLD+ can be integrated quickly and easily into routine workflow, increasing productivity and reducing instrument downtime,” said Paul Roberts, analytical product manager at Biotage.

Related Links:


Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.