Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Gold Nanoparticles Designed to Track Viruses

By BiotechDaily International staff writers
Posted on 30 Jan 2014
Print article
Image: Transmission electron microscopy (TEM) image of a single CVB3 virus showing tens of gold nanoparticles attached to its surface (left). The particles form a distinct “tagging pattern” that reflects the shape and the structure of the virus. The TEM image can be correlated to the model of the virus (right), where the yellow spheres mark the possible binding sites of the gold particles. The diameter of the virus is about 35 nm (Photo courtesy of PNAS - Proceedings of the National Academy of Sciences of the United States of America).
Image: Transmission electron microscopy (TEM) image of a single CVB3 virus showing tens of gold nanoparticles attached to its surface (left). The particles form a distinct “tagging pattern” that reflects the shape and the structure of the virus. The TEM image can be correlated to the model of the virus (right), where the yellow spheres mark the possible binding sites of the gold particles. The diameter of the virus is about 35 nm (Photo courtesy of PNAS - Proceedings of the National Academy of Sciences of the United States of America).
Finish scientists have developed a unique strategy for the study of Enterovirus structures and their biologic processes. The new approach will help in obtaining new data on viruses functioning in cells and tissues as well as on the mechanisms of virus opening inside cells. This new information will be important, for instance, for developing new antiviral drugs and vaccines.

The study’s findings were published January 13, 2014, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). The research, conducted by researchers at the Nanoscience Center (NSC) of the University of Jyväskylä (Finland), was funded by the Academy of Finland (Helsinki) and Tekes’ (Länsi-Pasila, Finland) FiDiPro project NOVAC (Novel Methods for Vaccination and Virus Detection).

The infection mechanisms and infectious pathways of enteroviruses are still rather poorly known. Earlier research from the group of NSC’s Dr. Varpu Marjomäki have centered on the cellular factors that are important for the infection caused by selected enteroviruses. The understanding of virus processes of opening and releasing the viral genome in cellular structures for starting new virus production is still mostly unknown. Moreover, the knowledge of infectious processes in tissues is restricted by the lack of effective tools for detecting virus infections.

The newly developed technique involves a chemical modification of a known thiol-stabilized gold nanoparticle, the so-called Au102 cluster, which was first synthesized and structurally deciphered by Dr. Roger D. Kornberg’s team, from Stanford University (Stanford, CA, USA), in 2007 and later characterized at the NSC by the groups of Prof. Hannu Häkkinen and Prof. Mika Pettersson in collaboration with Dr. Kornberg.

The organic thiol surface of the Au102 particles is modified by attaching linker molecules that make a chemical bond to sulfur-containing cysteine residues that are part of the surface structure of the virus. Several tens of gold particles can bind to a single virus, and the binding pattern looks like dark tags reflecting the overall shape and structure of the virus. The gold particles allow for studies on the structural changes of the viruses during their lifespan.

In addition, the study’s findings revealed that the viruses’ infection approach is not compromised by the attached gold particles, which indicates that the labelling strategy does not interfere with the normal biologic functions of viruses inside cells. This aids new research on the virus structures from samples gathered from inside cells during the various phases of the virus infection, and makes it possible to obtain new information on the mechanisms of virus uncoating.

The new technique, according to the researchers, also allows for tracking studies of virus pathways in tissues. This is significant for the further determination of acute and chronic symptoms caused by viruses. Finally, the method is expected to be useful for developing new antiviral vaccines based on virus-like particles.

The method was developed at the NSC as a wide, cross-disciplinary collaboration between physicists, chemists, and biologists.

Related Links:

University of Jyväskylä



Print article

Channels

Genomics/Proteomics

view channel
Image: A confocal microscopy image of human fibroblasts derived from embryonic stem cells. The nuclei appear in blue, while smaller and more numerous mitochondria appear in red (Photo courtesy of Dr. Shoukhrat Mitalipov, Oregon Health & Science University).

Stem Cells Derived from Older Individuals May Carry Unsafe Mitochondrial DNA Mutations

Induced pluripotent stem cells (iPSCs) derived from the skin fibroblasts of older individuals have a likelihood of harboring mitochondrial DNA mutations, which may render them unfit for clinical applications.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

DNA Synthesis Specialists Acquire Advanced Software Design Capabilities

An American biotech firm that develops and produces synthetic DNA has established an international presence by purchasing an Israeli genetic design software company. Twist Bioscience Corporation (San Francisco, CA, USA), a company specializing in rapid, high-quality DNA synthesis, announced that Genome Compiler Corporation... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.