Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New System Breaks Technology and Cost Barriers for High-Throughput Large-Genome Sequencing

By BiotechDaily International staff writers
Posted on 28 Jan 2014
Image: The HiSeq X Ten, composed of 10 HiSeq X Systems, breaks the USD 1000 barrier for a 30x human genome, enabling population-scale projects on genotypic variation to understand and improve human health (Photo courtesy of Illumina).
Image: The HiSeq X Ten, composed of 10 HiSeq X Systems, breaks the USD 1000 barrier for a 30x human genome, enabling population-scale projects on genotypic variation to understand and improve human health (Photo courtesy of Illumina).
A new DNA sequencing system utilizes advanced design features to generate massive throughput and enable the world's first USD 1000 human genome sequence.

This achievement has been reached with the new HiSeq X Ten Sequencing System from Illumina (San Diego, CA, USA). The platform includes technology breakthroughs that enable researchers to undertake population and disease studies of unprecedented scale by providing the throughput to sequence tens of thousands of human whole genomes in a single year in a single lab. The HiSeq X Ten is the world’s first platform to deliver high quality, high-coverage human genome sequences for less than USD 1,000—inclusive of typical instrument depreciation, DNA extraction, library preparation, and estimated labor.

Purpose-built for population-scale human whole genome sequencing, the HiSeq X Ten is a platform especially suitable for scientists and institutions focused on the discovery of genotypic variation to enable a deeper understanding of biology and disease. It can deliver a comprehensive catalog of human variation within and outside of coding regions. “The ability to explore the human genome on this scale will bring the study of cancer and complex diseases to a new level. Breaking the ‘sound barrier’ of human genetics not only pushes us through a psychological milestone, it enables projects of unprecedented scale. We are excited to see what lies on the other side,” said Jay Flatley, CEO, Illumina.

Building on the proven performance of Illumina sequencing-by-synthesis (SBS) technology, HiSeq X Ten utilizes a number of advanced design features to generate massive throughput. Patterned flow cells (which contain billions of nanowells at fixed locations) combined with a new clustering chemistry deliver a significant increase in data density (6 billion clusters per run). Using state-of-the art optics and faster chemistry, HiSeq X Ten can process sequencing flow cells more quickly than ever before – generating a 10x increase in daily throughput when compared to current HiSeq 2500 performance. The HiSeq X Ten is sold as a set of 10 or more ultra-high throughput sequencing systems, each generating up to 1.8 terabases (Tb) of sequencing data in less than 3 days or up to 600 gigabases (Gb) per day, per system.

Initial users of the transformative HiSeq X Ten System include Macrogen (Seoul, Republic of Korea) and its CLIA laboratory (Rockville, MD, USA), the Broad Institute (Cambridge, MA, USA), and the Garvan Institute of Medical Research (Sydney, Australia).

“The sequencing capacity and economies of scale of the HiSeq X Ten facility will also allow Garvan to accelerate the introduction of clinical genomics and next-generation medicine in Australia,” said Prof. John Mattick, Executive Director of the Garvan Institute of Medical Research.

Eric Lander, founding director of the Broad Institute and professor of biology at MIT, said, “The HiSeq X Ten should give us the ability to analyze complete genomic information from huge sample populations. Over the next few years, we have an opportunity to learn as much about the genetics of human disease as we have learned in the history of medicine.”

“Macrogen will deploy this groundbreaking technology to open a new era of large-scale, whole genome sequencing in our certified CLIA laboratory,” said Dr. Jeong-Sun Seo, Chairman of Macrogen; “Additionally, we will use the HiSeq X Ten to continue our collaboration with the Genomic Medicine Institute of Seoul National University focused on sequencing Asian populations in order to build a genomics database for use in medical research and healthcare applications.”

Related Links:

Illumina



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: (Left) Neurons in brains from people with autism do not undergo normal pruning during childhood and adolescence. The images show representative neurons from unaffected brains (left) and brains from autistic patients (right); the spines on the neurons indicate the location of synapses (Photo courtesy of Guomei Tang, PhD and Mark S. Sonders, PhD, Columbia University Medical Center).

Autistic Youngsters Found to Have Too Many Brain Synapses

Autistic children and adolescents have been shown to have an excess of brain synapses, and this is due to a slowdown in the normal brain “trimming” process during development, according to new findings.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel

Important Immune Cell Regulators’ Response Identified

A new strategy could help accelerate laboratory research and the development of potential therapeutics, including vaccines. The technology may also be used to identify the genes that underlie tumor cell development. There are approximately 40,000 genes in each of the body’s cells, but functions for only approximately... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.