Features Partner Sites Information LinkXpress
Sign In
Demo Company

New System Breaks Technology and Cost Barriers for High-Throughput Large-Genome Sequencing

By BiotechDaily International staff writers
Posted on 28 Jan 2014
Print article
Image: The HiSeq X Ten, composed of 10 HiSeq X Systems, breaks the USD 1000 barrier for a 30x human genome, enabling population-scale projects on genotypic variation to understand and improve human health (Photo courtesy of Illumina).
Image: The HiSeq X Ten, composed of 10 HiSeq X Systems, breaks the USD 1000 barrier for a 30x human genome, enabling population-scale projects on genotypic variation to understand and improve human health (Photo courtesy of Illumina).
A new DNA sequencing system utilizes advanced design features to generate massive throughput and enable the world's first USD 1000 human genome sequence.

This achievement has been reached with the new HiSeq X Ten Sequencing System from Illumina (San Diego, CA, USA). The platform includes technology breakthroughs that enable researchers to undertake population and disease studies of unprecedented scale by providing the throughput to sequence tens of thousands of human whole genomes in a single year in a single lab. The HiSeq X Ten is the world’s first platform to deliver high quality, high-coverage human genome sequences for less than USD 1,000—inclusive of typical instrument depreciation, DNA extraction, library preparation, and estimated labor.

Purpose-built for population-scale human whole genome sequencing, the HiSeq X Ten is a platform especially suitable for scientists and institutions focused on the discovery of genotypic variation to enable a deeper understanding of biology and disease. It can deliver a comprehensive catalog of human variation within and outside of coding regions. “The ability to explore the human genome on this scale will bring the study of cancer and complex diseases to a new level. Breaking the ‘sound barrier’ of human genetics not only pushes us through a psychological milestone, it enables projects of unprecedented scale. We are excited to see what lies on the other side,” said Jay Flatley, CEO, Illumina.

Building on the proven performance of Illumina sequencing-by-synthesis (SBS) technology, HiSeq X Ten utilizes a number of advanced design features to generate massive throughput. Patterned flow cells (which contain billions of nanowells at fixed locations) combined with a new clustering chemistry deliver a significant increase in data density (6 billion clusters per run). Using state-of-the art optics and faster chemistry, HiSeq X Ten can process sequencing flow cells more quickly than ever before – generating a 10x increase in daily throughput when compared to current HiSeq 2500 performance. The HiSeq X Ten is sold as a set of 10 or more ultra-high throughput sequencing systems, each generating up to 1.8 terabases (Tb) of sequencing data in less than 3 days or up to 600 gigabases (Gb) per day, per system.

Initial users of the transformative HiSeq X Ten System include Macrogen (Seoul, Republic of Korea) and its CLIA laboratory (Rockville, MD, USA), the Broad Institute (Cambridge, MA, USA), and the Garvan Institute of Medical Research (Sydney, Australia).

“The sequencing capacity and economies of scale of the HiSeq X Ten facility will also allow Garvan to accelerate the introduction of clinical genomics and next-generation medicine in Australia,” said Prof. John Mattick, Executive Director of the Garvan Institute of Medical Research.

Eric Lander, founding director of the Broad Institute and professor of biology at MIT, said, “The HiSeq X Ten should give us the ability to analyze complete genomic information from huge sample populations. Over the next few years, we have an opportunity to learn as much about the genetics of human disease as we have learned in the history of medicine.”

“Macrogen will deploy this groundbreaking technology to open a new era of large-scale, whole genome sequencing in our certified CLIA laboratory,” said Dr. Jeong-Sun Seo, Chairman of Macrogen; “Additionally, we will use the HiSeq X Ten to continue our collaboration with the Genomic Medicine Institute of Seoul National University focused on sequencing Asian populations in order to build a genomics database for use in medical research and healthcare applications.”

Related Links:


Print article



view channel
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).

How Blocking TROY Signaling Slows Brain Cancer Growth

Cancer researchers have found how the low molecular weight drug propentofylline (PPF) slows the growth of the aggressive brain tumor glioblastoma multiforme (GBM). This form of brain cancer is the most... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.