Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Powder Developed to Enhance NMR Signals for Faster, Better Structure Determination and Early Cancer MRI Diagnosis

By BiotechDaily International staff writers
Posted on 22 Jan 2014
Image: Schematic of polarization process: Polarizing Agent (powder) (left), Molecule (red), Microwave (top), Nuclear Magnetic Resonance (bottom), Hyperpolarization of the targeted molecule (left) (Photo courtesy of the University of Lyon, France).
Image: Schematic of polarization process: Polarizing Agent (powder) (left), Molecule (red), Microwave (top), Nuclear Magnetic Resonance (bottom), Hyperpolarization of the targeted molecule (left) (Photo courtesy of the University of Lyon, France).
Dynamic nuclear polarization (DNP) combined with nuclear magnetic resonance (NMR) allows, due to polarizing agents, the enhancement of NMR signals from a wide range of molecules resulting in the substantial reduction of the NMR acquisition time. It reveals, therefore, strong advantages over conventional NMR and possibly over X-ray diffraction techniques used to characterize proteins on synchrotron type equipment.

NMR spectroscopy is an extremely powerful nondestructive technique for the characterization of molecules. Widely used by chemists from its early beginnings, it is now essential in the synthesis and analysis laboratories and its scope extends into biologic laboratories.

NMR has also known an exciting new advance in the medical field with the development of magnetic resonance imaging (MRI). Up to now, the DNP has been effectively applied to MRI for the early diagnosis of tumors in small animals (pigs and rodents) in preclinical research and more recently to 30 human patients having prostate cancers. However, MRI using DNP cannot be generalized to human diagnosis because polarizing agents used to activate biologic tracers/contrast agents need to be quantitatively separated from the polarized solution before human injection and image acquisition. This technical hurdle is now solved.

In this framework, an innovative powder for the easy polarization of many molecules, including biologic tracers, was developed in the frame of a European collaboration involving the University of Lyon’s laboratory of chemistry, catalysis, polymers and processes (UMR 5265-LC2P2), the European Center for High-Field NMR (UMR 5280, CRMN; Lyon, France) and ETH (Swiss Federal Institute of Technology) Zurich (Switzerland). These novel powders are creating tools for the fast characterization of complex systems by means of solid state NMR using DNP but also in the field of medical imaging for early cancer diagnosis using MRI. In this latter field, these agents can deliver a solution of polarized biologic tracers/contrast agents that are free from any impurity and therefore safe to inject in humans.

The research was published August 2013 in Journal of the American Chemical Society.

Related Links:

University of Lyon
European Center for High-Field NMR
ETH Zurich



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.