Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Powder Developed to Enhance NMR Signals for Faster, Better Structure Determination and Early Cancer MRI Diagnosis

By BiotechDaily International staff writers
Posted on 22 Jan 2014
Image: Schematic of polarization process: Polarizing Agent (powder) (left), Molecule (red), Microwave (top), Nuclear Magnetic Resonance (bottom), Hyperpolarization of the targeted molecule (left) (Photo courtesy of the University of Lyon, France).
Image: Schematic of polarization process: Polarizing Agent (powder) (left), Molecule (red), Microwave (top), Nuclear Magnetic Resonance (bottom), Hyperpolarization of the targeted molecule (left) (Photo courtesy of the University of Lyon, France).
Dynamic nuclear polarization (DNP) combined with nuclear magnetic resonance (NMR) allows, due to polarizing agents, the enhancement of NMR signals from a wide range of molecules resulting in the substantial reduction of the NMR acquisition time. It reveals, therefore, strong advantages over conventional NMR and possibly over X-ray diffraction techniques used to characterize proteins on synchrotron type equipment.

NMR spectroscopy is an extremely powerful nondestructive technique for the characterization of molecules. Widely used by chemists from its early beginnings, it is now essential in the synthesis and analysis laboratories and its scope extends into biologic laboratories.

NMR has also known an exciting new advance in the medical field with the development of magnetic resonance imaging (MRI). Up to now, the DNP has been effectively applied to MRI for the early diagnosis of tumors in small animals (pigs and rodents) in preclinical research and more recently to 30 human patients having prostate cancers. However, MRI using DNP cannot be generalized to human diagnosis because polarizing agents used to activate biologic tracers/contrast agents need to be quantitatively separated from the polarized solution before human injection and image acquisition. This technical hurdle is now solved.

In this framework, an innovative powder for the easy polarization of many molecules, including biologic tracers, was developed in the frame of a European collaboration involving the University of Lyon’s laboratory of chemistry, catalysis, polymers and processes (UMR 5265-LC2P2), the European Center for High-Field NMR (UMR 5280, CRMN; Lyon, France) and ETH (Swiss Federal Institute of Technology) Zurich (Switzerland). These novel powders are creating tools for the fast characterization of complex systems by means of solid state NMR using DNP but also in the field of medical imaging for early cancer diagnosis using MRI. In this latter field, these agents can deliver a solution of polarized biologic tracers/contrast agents that are free from any impurity and therefore safe to inject in humans.

The research was published August 2013 in Journal of the American Chemical Society.

Related Links:

University of Lyon
European Center for High-Field NMR
ETH Zurich



Channels

Genomics/Proteomics

view channel
Image: Typical antibodies (left) unfold in the harsh environment of the cell. Camelid antibodies (right) are smaller and more stable (Photo courtesy of the Washington University School of Medicine).

Double Targeting Approach Increases Potential for Cancer Treatment with Oncolytic Viruses

Cancer researchers have used a double targeting approach to direct oncolytic viruses specifically to tumor cells where they reproduce until the cancer cells burst, releasing more viruses to infect and... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.