Features Partner Sites Information LinkXpress
Sign In
Demo Company

Powder Developed to Enhance NMR Signals for Faster, Better Structure Determination and Early Cancer MRI Diagnosis

By BiotechDaily International staff writers
Posted on 22 Jan 2014
Print article
Image: Schematic of polarization process: Polarizing Agent (powder) (left), Molecule (red), Microwave (top), Nuclear Magnetic Resonance (bottom), Hyperpolarization of the targeted molecule (left) (Photo courtesy of the University of Lyon, France).
Image: Schematic of polarization process: Polarizing Agent (powder) (left), Molecule (red), Microwave (top), Nuclear Magnetic Resonance (bottom), Hyperpolarization of the targeted molecule (left) (Photo courtesy of the University of Lyon, France).
Dynamic nuclear polarization (DNP) combined with nuclear magnetic resonance (NMR) allows, due to polarizing agents, the enhancement of NMR signals from a wide range of molecules resulting in the substantial reduction of the NMR acquisition time. It reveals, therefore, strong advantages over conventional NMR and possibly over X-ray diffraction techniques used to characterize proteins on synchrotron type equipment.

NMR spectroscopy is an extremely powerful nondestructive technique for the characterization of molecules. Widely used by chemists from its early beginnings, it is now essential in the synthesis and analysis laboratories and its scope extends into biologic laboratories.

NMR has also known an exciting new advance in the medical field with the development of magnetic resonance imaging (MRI). Up to now, the DNP has been effectively applied to MRI for the early diagnosis of tumors in small animals (pigs and rodents) in preclinical research and more recently to 30 human patients having prostate cancers. However, MRI using DNP cannot be generalized to human diagnosis because polarizing agents used to activate biologic tracers/contrast agents need to be quantitatively separated from the polarized solution before human injection and image acquisition. This technical hurdle is now solved.

In this framework, an innovative powder for the easy polarization of many molecules, including biologic tracers, was developed in the frame of a European collaboration involving the University of Lyon’s laboratory of chemistry, catalysis, polymers and processes (UMR 5265-LC2P2), the European Center for High-Field NMR (UMR 5280, CRMN; Lyon, France) and ETH (Swiss Federal Institute of Technology) Zurich (Switzerland). These novel powders are creating tools for the fast characterization of complex systems by means of solid state NMR using DNP but also in the field of medical imaging for early cancer diagnosis using MRI. In this latter field, these agents can deliver a solution of polarized biologic tracers/contrast agents that are free from any impurity and therefore safe to inject in humans.

The research was published August 2013 in Journal of the American Chemical Society.

Related Links:

University of Lyon
European Center for High-Field NMR
ETH Zurich

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.