Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Improved Molecular Backbone Enhances Function of RNA Interference Tools

By BiotechDaily International staff writers
Posted on 31 Dec 2013
Biotechnology researchers have reported significant progress in the development of synthetic RNAi (RNA interference) tools by enhancing the efficiency of the molecule's 30-nucleotide backbone.

Investigators at Mirimus Inc. (Cold Spring Harbor, NY, USA) have been working to improve short hairpin RNA (shRNA) technology to better enable stable and regulated gene repression.

A short hairpin RNA (shRNA) is a snippet of RNA that contains a structural tight hairpin turn and that can be used to silence gene expression via RNA interference. The shRNA hairpin structure is cleaved by the cellular machinery into siRNA (short interfering RNA), which is then bound to the RNA-induced silencing complex (RISC). This complex knocks out gene expressing by binding to and cleaving mRNAs, which match the siRNA that is bound to it.

However, due to incomplete understanding of natural microRNA synthesis, artificial shRNAs often fail to trigger potent gene knockdown, especially when expressed from a single genomic copy. The investigators reported in the December 12, 2013, online edition of the journal Cell Reports that they had identified a conserved element 3′ of the basal stem as critically required for optimal shRNA processing and incorporated it into an optimized backbone that they called “miR-E,” which strongly increased mature shRNA levels and knockdown efficacy.

The investigators stated that existing miR-30 reagents could easily be converted to miR-E, and its combination with up-to-date design rules established a validated and accessible platform for generating effective single-copy shRNA libraries.

First author Dr. Christof Fellmann, senior researcher at Mirimus, said, "The molecular underpinnings of efficient gene silencing are yet to be fully understood. Potent RNAi triggers are rare and have to be identified among hundreds to thousands of possibilities for each gene. To advance current techniques, we looked at the evolutionary conservation of natural RNAi triggers to build enhanced synthetic analogues. This advancement is highly relevant to reduce to practice the great promise of RNAi for drug discovery and biomedical research."

Related Links:
Mirimus Inc.



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This micrograph depicts the presence of aerobic Gram-negative Neisseria meningitidis diplococcal bacteria; magnification 1150x (Photo courtesy of the CDC - US Centers for Disease Control and Prevention).

Infection by Meningitis Bacteria Depends on Dimerization State of Certain Host Cell Proteins

A team of molecular microbiologists has untangled the complex three-way interaction between the non-integrin laminin receptor (LAMR1), galectin-3 (Gal-2), and the pathogenic bacterium Neisseria meningitidis.... Read more

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.