Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

New Study Using MR Technology to Revolutionize Disease Research

By BiotechDaily International staff writers
Posted on 26 Dec 2013
Print article
Image: The Siemens’ Magnetom Aera 1.5T MRI system (Photo courtesy of Siemens Healthcare).
Image: The Siemens’ Magnetom Aera 1.5T MRI system (Photo courtesy of Siemens Healthcare).
Image: The MAGNETOM Skyra 3T MRI (Photo courtesy of Siemens Healthcare).
Image: The MAGNETOM Skyra 3T MRI (Photo courtesy of Siemens Healthcare).
A world-leading health research resource based in the United Kingdom is establishing an imaging study to help scientists gain a more comprehensive determination of a wide range of diseases including cancer, dementia, and bone, heart, and brain disorders.

Utilizing the magnetic resonance imaging (MRI) capabilities of a Magnetom Aera and a Magnetom Skyra, developed by Siemens Healthcare (Erlangen, Germany), UK Biobank (Manchester, UK) expects their research project to be the most thorough study of its kind ever conducted. The MR systems will be used to obtain the vital translational research images of the study participants’ hearts and brains. Bone scans and scanning of the carotid artery (in the neck) are also planned.

In the most part funded by the UK Department of Health, Medical Research Council, and Wellcome Trust charity, UK Biobank will track the health of 500,000 British citizens over many years. The imaging part of the project, due to take place in spring 2014, will be the first time researchers have endeavored to image so many people in a single study. It is expected that the research will provide further data for scientists and clinicians trying to develop a better understanding of disorders that cause disability, pain, and premature death.

The Magnetom Aera and Skyra MR systems feature 48 radiofrequency (RF) channels as standard and lightweight coils. The systems’ open bore design with a 70-cm-wide aperture, allows a wide range of body types to be scanned either head or feet first, substantially optimizing comfort for the study participants. The systems also feature TimTM 4G (Total imaging matrix) and DotTM (Day optimizing throughput) technology integration for high-resolution imaging, improved efficiency, and enhanced productivity.

“UK Biobank is the major health research success story of recent decades. Our 500,000 participants have already provided lots of information about their health, lifestyles, and wellbeing, as well as blood, urine, and saliva samples for long-term storage and analysis, including genetic research,” noted Prof. Rory Collins, lead investigator at UK Biobank. “Adding this detailed extra information will help in many ways. For instance, it may help to identify early changes that indicate the start of disease, and it may suggest new ways to slow that process, or to prevent the disease altogether.”

“Siemens MR technology is already pivotal to many imaging research projects across the UK and we are delighted to take this one step further by taking part in one of the most detailed imaging studies of its kind,” stated Jane Kilkenny, MR business manager at Siemens Healthcare. “We look forward to supporting the project with the Magnetom Aera and Skyra’s excellent image quality and rapid acquisition times, with the end goal of producing images of a quality that can help with pioneering research into the cause and treatment of major diseases.”

UK Biobank is hosted by the University of Manchester (UK) and supported by the National Health Service (NHS). It works with researchers from a large number of British universities. The medical research project is a nonprofit charity and had initial funding of approximately GBP 62 million.

Related Links:

Siemens Healthcare
UK Biobank



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

Bio-Innovation Agreement to Strengthen Ties between Canada and Israel

A recently signed agreement aims at encouraging academic and entrepreneurial ties in the field of bio-innovation between a Canadian and an Israeli university. The agreement will establish a strong relationship between the University of Toronto (Canada) – in the form of the Institute of Biomaterials and Biomedical Engineering... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.