Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

New Study Using MR Technology to Revolutionize Disease Research

By BiotechDaily International staff writers
Posted on 26 Dec 2013
Image: The Siemens’ Magnetom Aera 1.5T MRI system (Photo courtesy of Siemens Healthcare).
Image: The Siemens’ Magnetom Aera 1.5T MRI system (Photo courtesy of Siemens Healthcare).
Image: The MAGNETOM Skyra 3T MRI (Photo courtesy of Siemens Healthcare).
Image: The MAGNETOM Skyra 3T MRI (Photo courtesy of Siemens Healthcare).
A world-leading health research resource based in the United Kingdom is establishing an imaging study to help scientists gain a more comprehensive determination of a wide range of diseases including cancer, dementia, and bone, heart, and brain disorders.

Utilizing the magnetic resonance imaging (MRI) capabilities of a Magnetom Aera and a Magnetom Skyra, developed by Siemens Healthcare (Erlangen, Germany), UK Biobank (Manchester, UK) expects their research project to be the most thorough study of its kind ever conducted. The MR systems will be used to obtain the vital translational research images of the study participants’ hearts and brains. Bone scans and scanning of the carotid artery (in the neck) are also planned.

In the most part funded by the UK Department of Health, Medical Research Council, and Wellcome Trust charity, UK Biobank will track the health of 500,000 British citizens over many years. The imaging part of the project, due to take place in spring 2014, will be the first time researchers have endeavored to image so many people in a single study. It is expected that the research will provide further data for scientists and clinicians trying to develop a better understanding of disorders that cause disability, pain, and premature death.

The Magnetom Aera and Skyra MR systems feature 48 radiofrequency (RF) channels as standard and lightweight coils. The systems’ open bore design with a 70-cm-wide aperture, allows a wide range of body types to be scanned either head or feet first, substantially optimizing comfort for the study participants. The systems also feature TimTM 4G (Total imaging matrix) and DotTM (Day optimizing throughput) technology integration for high-resolution imaging, improved efficiency, and enhanced productivity.

“UK Biobank is the major health research success story of recent decades. Our 500,000 participants have already provided lots of information about their health, lifestyles, and wellbeing, as well as blood, urine, and saliva samples for long-term storage and analysis, including genetic research,” noted Prof. Rory Collins, lead investigator at UK Biobank. “Adding this detailed extra information will help in many ways. For instance, it may help to identify early changes that indicate the start of disease, and it may suggest new ways to slow that process, or to prevent the disease altogether.”

“Siemens MR technology is already pivotal to many imaging research projects across the UK and we are delighted to take this one step further by taking part in one of the most detailed imaging studies of its kind,” stated Jane Kilkenny, MR business manager at Siemens Healthcare. “We look forward to supporting the project with the Magnetom Aera and Skyra’s excellent image quality and rapid acquisition times, with the end goal of producing images of a quality that can help with pioneering research into the cause and treatment of major diseases.”

UK Biobank is hosted by the University of Manchester (UK) and supported by the National Health Service (NHS). It works with researchers from a large number of British universities. The medical research project is a nonprofit charity and had initial funding of approximately GBP 62 million.

Related Links:

Siemens Healthcare
UK Biobank



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.