Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
BioConferenceLive

Accelerator-on-a-Chip Designed for Medical, Research Applications

By BiotechDaily International staff writers
Posted on 14 Oct 2013
Image: Nanofabricated chips of fused silica just 3-mm-long were used to accelerate electrons at a rate 10 times higher than conventional particle accelerator technology (Photo courtesy of Brad Plummer/SLAC).
Image: Nanofabricated chips of fused silica just 3-mm-long were used to accelerate electrons at a rate 10 times higher than conventional particle accelerator technology (Photo courtesy of Brad Plummer/SLAC).
Image: The key to the accelerator chips is tiny, precisely spaced ridges, which cause the iridescence seen in this close-up photo (Photo courtesy of Brad Plummer/SLAC).
Image: The key to the accelerator chips is tiny, precisely spaced ridges, which cause the iridescence seen in this close-up photo (Photo courtesy of Brad Plummer/SLAC).
Image: The nanoscale patterns of SLAC and Stanford’s accelerator on a chip gleam in rainbow colors prior to being assembled and cut into their final forms (Photo courtesy of Brad Plummer/SLAC).
Image: The nanoscale patterns of SLAC and Stanford’s accelerator on a chip gleam in rainbow colors prior to being assembled and cut into their final forms (Photo courtesy of Brad Plummer/SLAC).
A new technologic achievement could drastically downsize particle accelerators for medical and science applications. Researchers are now using a laser to accelerate electrons at 10 times the rate of higher than traditional technology in a nanostructured glass chip smaller than one grain of rice.

The project was reported September 27, 2013, in the journal Nature by a group including scientists from the US Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University (Menlo Park, CA, USA). “We still have a number of challenges before this technology becomes practical for real-world use, but eventually it would substantially reduce the size and cost of future high-energy particle colliders for exploring the world of fundamental particles and forces,” said Dr. Joel England, the SLAC physicist who led the research. “It could also help enable compact accelerators and X-ray devices for security scanning, medical therapy, and imaging, and research in biology and materials science.”

Because it employs commercial lasers and low-cost, mass-production technology, the researchers believe it will set the stage for new generations of “tabletop” accelerators. At its full potential, the new “accelerator on-a-chip” could equal the accelerating ability of SLAC’s 3.22-km-long linear accelerator in only 30.5 m, and deliver one million more electron pulses per second.

This first demonstration achieved an acceleration gradient, or amount of energy gained per length, of 300 million electron volts per meter. That is about 10 times the acceleration provided by the current SLAC linear accelerator. “Our ultimate goal for this structure is one billion electron volts per meter, and we’re already one-third of the way in our first experiment,” said Stanford Prof. Robert Byer, the lead investigator for this research.

Currently used accelerators employ microwaves to enhance the energy of electrons. Scientists have been searching for more cost-effective options, and this new technique, which uses ultrafast lasers to propel the accelerator, is a leading candidate. Particles are typically accelerated in two stages. They are first boosted to nearly the speed of light. Then any further acceleration increases their energy, but not their speed; this is the problematic part.

In the accelerator-on-a-chip experiments, electrons are first accelerated to near light-speed in a conventional accelerator. Then they are focused into a tiny, half-micron-high channel within a fused silica glass chip just half a millimeter long. The channel had been patterned with specifically positioned nanoscale ridges. Infrared laser light shining on the pattern generates electrical fields that interact with the electrons in the channel to boost their energy. Turning the accelerator-on-a-chip into an actual tabletop accelerator will require a more compact approach to boost the electrons’ speed before they enter the device.

A collaborating research group in Germany, led by Peter Hommelhoff at Friedrich Alexander University (Nürnberg) and the Max Planck Institute of Quantum Optics (Garching), has been looking for such a solution. It simultaneously reported its effectiveness in using a laser to accelerate lower-energy electrons.

Applications for these new particle accelerators would go way beyond particle physics research. Prof. Byer noted that laser accelerators could drive compact X-ray-free electron lasers, comparable to SLAC’s Linac Coherent Light Source, which can become all-purpose tools for a wide range of research.

Another possible application is small, portable X-ray sources to enhance healthcare for individuals with war injuries, as well as provide more cost-effective medical imaging for hospitals and laboratories.

Related Links:
SLAC National Accelerator Laboratory and Stanford University


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.